Matlab功率谱估计的详尽分析——绝对原创功率谱估计是信息学科中的研究热点,在过去的30多年里取得了飞速的发展。
现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。
其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。
ARMA谱估计叫做自回归移动平均谱估计,它是一种模型化方法。
由于具有广泛的代表性和实用性,ARMA谱估计在近十几年是现代谱估计中最活跃和最重要的研究方向之一。
二:AR参数估计及其SVD—TLS算法。
谱分析方法要求ARMA模型的阶数和参数以及噪声的方差已知.然而这类要求在实际中是不可能提供的,即除了一组样本值x(1),x(2),…,x(T)以供利用(有时会有一定的先验知识)外,再没有其它可用的数据.因此必须估计有关的阶数和参数,以便获得谱密度的估计.在ARMA定阶和参数之估计中,近年来提出了一些新算法,如本文介绍的SVD—TLS算法便是其中之一。
三:实验结果分析和展望1,样本数多少对估计误差的影响。
(A=[1,0.8,-0.68,-0.46])图1上部分为N=1000;
下部分为取相同数据的前N=50个数据产生的结果。
图1N数不同:子图一N=1000,子图二N=200,子图三N=50由图可知,样本数在的多少,在对功率谱估计的效果上有巨大的作用,特别在功率谱密度函数变化剧烈的地方,必须有足够多的数据才能完整的还原原始功率谱密度函数。
2,阶数大小对估计误差的影响。
A=[1,-0.9,0.76]A=[1,-0.9,0.76,-0.776]图二阶数为二阶和三阶功率密度函数图A=[1,-0.9,0.86,-0.96,0.7]A=[1,-0.9,0.86,-0.96,0.7,-0.74]图三阶数为三阶和四阶功率密度函数图如图所示,阶数相差不是很大时,并不能对结果产生较大的影响。
但是阶数太低,如图二中二阶反而不能很好的估计出原始值。
3,样本点分布对估计误差对于相同的A=[1,-0.9,0.86,-0.96,0.7];
样本的不同,在估计时的误差是不可避免的。
因此,我们在取得样本时,应该尽可能的减少不必要的误差。
图四:不同的样本得到不同的估计值4,奇异值的阈值判定范围不同对结果的影响。
上图是取奇异值的阈值大于等于0.02,而下图是取阈值大于等于0.06,显然在同种数据下,阈值的选取和最终结果有密切关系。
由于系数矩阵和其真实值的逼近的精确度取决于被置零的那些奇异值的平方和。
所以选取太小,导致阶数增大,选取太大会淘汰掉真实的系数。
根据经验值,一般取0.05左右为最佳。
2025/4/16 9:53:51 1KB arma matlab
1
本人翻遍了CSDN都找不到一个正确的TOA定位算法程序,唯一找到的一个是用最小二乘解的(参考文献N.Patwari,J.N.Ash,S.Kyperountas,A.O.Hero,R.L.Moses,andN.S.Correal,"Locatingthenodes:cooperativelocalizationinwirelesssensornetworks,"IEEESignalProcessingMagazine,vol.22,no.4,pp.54-69,2005.),性能无法达到克拉美罗界。
因此本人自己重新写了一个程序,参考该领域著名学者K.C.Ho的文章(参考文献Z.MaandK.C.Ho,"TOAlocalizationinthepresenceofrandomsensorpositionerrors,"in2011IEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing(ICASSP),2011,pp.2468-2471.)。
该算法适用于传感器位置有误差/无误差的情况,算法性能能够达到克拉美罗界。
示例程序中给出了CRLB的程序,场景为传感器有误差的情况。
程序运行结果与参考文献一致。
(搞不懂现在的人都是要什么50积分,多分享下不好吗?)******特别提示******:本代码多处使用了Matlab2016a以后支持的新语法,旧版本无法正常运行的,请自行修改代码或更新Matlab版本!!!
2025/4/14 5:11:46 2KB TOD 定位 最小二乘 传感器误差
1
载波跟踪环路设计是GPS接收机中的关键技术,载波环鉴别器的类型确定了跟踪环的类型,为了有效地防止因为数据跳变引起的鉴别误差,并且使其频率鉴别范围大,精度高,采用一种二阶锁频环(FLL)辅助三阶锁相环(PLL)的方法。
通过Matlab仿真载波环路比较了两种鉴频和鉴相算法的性能。
结果表明,该方法鉴别范围大,精度高,切实可行。
2025/4/11 16:33:07 164KB RF|微波
1
在自动控制领域,掌握专业词汇是至关重要的,无论是学习理论知识还是进行实际操作,都需要对这些术语有清晰的理解。
这份名为“自动控制专业用词汇中英文对照”的文档,旨在为学习者提供一个全面且准确的词汇参考,方便他们在研究或工作中查找和理解相关概念。
自动控制,简单来说,是指通过某种装置或系统自动调节或操纵一个过程,使其保持在预定状态或按照预定方式运行。
这一领域的核心在于设计和分析能够自我调整并纠正偏差的系统。
以下是一些自动控制专业中的关键术语及其解释:1.**控制器(Controller)**:负责比较设定值(Setpoint)与实际测量值(ProcessVariable),并计算出必要的输出以减少误差。
2.**反馈(Feedback)**:系统中用于将输出信号反向传递回输入端的过程,有助于消除误差并稳定系统。
3.**开环控制系统(Open-LoopControlSystem)**:不依赖于反馈机制的系统,其输出不受系统实际状态影响。
4.**闭环控制系统(Closed-LoopControlSystem)**:包含反馈机制的系统,能够根据系统输出调整控制输入。
5.**比例积分微分器(PIDController)**:一种广泛应用的控制器,通过比例(P)、积分(I)和微分(D)三个部分来调整输出。
6.**稳定性(Stability)**:控制系统能够维持期望输出的能力,不受初始条件或外部扰动的影响。
7.**超调(Overshoot)**:在阶跃响应中,系统输出超过期望值的最大幅度。
8.**振荡(Oscillation)**:在系统响应中出现的周期性波动。
9.**死区(DeadBand)**:控制器在一定范围内不产生动作的输入变化范围。
10.**时间常数(TimeConstant)**:衡量系统响应速度的参数,与系统达到新稳态所需的时间相关。
11.**热控(ThermalControl)**:专门针对温度控制的技术,常见于能源、制造和环境工程等领域。
“热控专业知识网”可能是一个网络资源,提供了更多关于热控技术的信息,包括温度传感器、冷却系统、加热元件等专业知识。
学习这些词汇不仅可以帮助我们理解自动控制系统的原理,还能提高在实际应用中的效率和准确性。
无论是工程师在设计自动化设备,还是科研人员在进行控制理论研究,都离不开对这些专业词汇的深入理解和运用。
通过对照文档,可以轻松查找和学习,进一步提升专业素养。
2025/4/10 18:57:22 7KB
1
【GNSS/INS松组合导航Matlab程序】是一种在航空航天、自动驾驶、航海等领域广泛应用的导航技术,它结合了全球导航卫星系统(GNSS)和惯性导航系统(INS)的优点,提高了定位精度和稳定性。
在Matlab环境中实现这种松组合导航,能够方便地进行算法设计、仿真与验证。
我们要理解GNSS和INS的基本原理。
GNSS,如GPS(全球定位系统),通过接收来自卫星的信号来确定地面设备的位置、速度和时间。
而INS则依赖于陀螺仪和加速度计来测量载体的运动状态,无需外部参考即可连续提供位置、速度和姿态信息。
然而,GNSS可能会受到遮挡或干扰,INS则存在累积误差问题,松组合导航正是为了解决这些问题。
松组合导航的关键在于数据融合。
在Matlab程序中,通常会先利用GNSS数据生成初始的轨迹,然后根据这个轨迹产生模拟的惯导数据,包括陀螺仪和加速度计的输出。
这部分涉及到了信号处理、滤波理论和随机过程的知识,比如卡尔曼滤波(KalmanFilter)常被用于融合这两类传感器的数据。
接下来,这些模拟数据会被输入到惯导解算器中,进行运动状态的更新和校正。
惯导解算通常涉及到牛顿-欧拉方程、四元数表示法等,用于计算载体的位置、速度和姿态。
在Matlab中,可以利用内置的函数或自定义算法来实现这一过程。
仿真完成后,会使用这些模拟的GPS和INS数据进行松组合导航的实现。
松组合意味着GNSS和INS系统保持相对独立,各自进行数据处理,然后在一个高层次上进行信息交换。
这样做的好处是可以避免一个系统的误差影响另一个系统,同时保留各自的优点。
组合导航算法可能包括简单的数据融合策略,如时间同步或者更复杂的滤波算法。
在【sins+gnss】这个压缩包中,可能包含了实现上述功能的Matlab源代码文件,如初始化配置文件、数据生成脚本、滤波算法实现、结果分析工具等。
用户可以通过阅读和运行这些代码,深入理解松组合导航的工作原理,并对其进行定制和优化。
GNSS/INS松组合导航Matlab程序是导航技术研究的重要工具,涵盖了卫星导航、惯性导航、数据融合等多个领域的知识。
通过对这套程序的学习和实践,不仅可以掌握相关算法,还可以提升在复杂环境下的定位能力,对于科研和工程应用具有很高的价值。
2025/4/7 15:39:40 6.49MB matlab GNSS/INS
1
针对MEMS陀螺仪精度不高、随机噪声复杂的问题,研究了某MEMS陀螺仪的随机漂移模型。
应用时间序列分析方法,采用AR(1)模型对经过预处理的MEMS陀螺仪测量数据噪声进行建模,进而基于该AR模型并采用状态扩增法设计Kalman滤波算法。
速率试验和摇摆试验仿真结果表明在静态和恒定角速率条件下,采用该算法滤波后的MEMS陀螺仪的误差均值和标准差都比滤波前有了明显的降低。
针对摇摆基座下该算法随摆动幅度的增大效果变差的问题,从提高采样率和选择自适应Kalman滤波两个方面对算法进行改进。
仿真结果表明,两种方法都能改善滤波效果,然而考虑到系统采样频率和CPU计算速度的限制,自适应滤波有更高的实用性。
2025/4/3 11:28:36 417KB MEMS陀螺仪 ADXRS453 Kalman 滤波算法
1
机械设计课程设计-设计带式输送机传动装置内容很全,很辛苦才弄到的连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。
运输速度允许误差为。
课程设计内容1)传动装置的总体设计。
2)传动件及支承的设计计算。
3)减速器装配图及零件工作图。
4)设计计算说明书编写。
1
题目在下面,通过SPSS做的回归分析小论文,原理操作都很详细。
一:某公司在各地区销售一种特殊的化妆品。
该公司观测了15个城市在某季度内对该化妆品的销售量Y及各地区适合使用该化妆品的人数X1和人均收入X2,得到数据如表所示。
假设误差服从正态分布N(0,)试建立Y与X1,X2之间的线性回归方程并研究相应的统计推断问题(数据略)。
内容要求包括:(1)数据描述性分析,自变量与因变量线性关系预判断;
(2)回归分析,模型检验,系数检验;
(3)多重共线性检验,DW检验;
(4)残差分析。
二:下面是我国1990到2013年的一些经济数据,请做回归分析(数据略)。
2025/4/1 5:04:53 259KB data analysis
1
.版本2.子程序窗口_截图,字节集,公开,截取指定窗口的位图,可截取窗口中指定区域,最小化窗口或不可见窗口无法截取位图.参数窗口句柄,整数型,,欲截取窗口图片的窗口句柄.参数左边,整数型,可空,默认为0在窗口中截取图片的左边(相对于窗口的左边偏移坐标).参数顶边,整数型,可空,默认为0在窗口中截取图片的顶边(相对于窗口的顶边偏移坐标).参数宽度,整数型,可空,在窗口中截取图片的宽度(若为空,则截取整个窗口位图).参数高度,整数型,可空,在窗口中截取图片的高度(若为空,则截取整个窗口位图).子程序窗口_判断色彩度相同数,逻辑型,公开,满足最低相同数目返回真,否则返回假.参数窗口句柄,整数型,,指定的窗口句柄(对于最小化窗口或不可见窗口无效).参数色,整数型,,欲判断的颜色色彩度(色彩度:0-255).参数最低,整数型,,最低相同的数目.参数左下角,识图_坐标,可空,判断范围的左下角坐标,默认为0.参数宽度,整数型,,向右的范围宽度.参数高度,整数型,,向上的范围高度.参数返回相同数,整数型,参考可空.子程序窗口_取颜色,整数型,公开,取出窗口中指定点的颜色值(返回十进制颜色值,失败返回-1).参数窗口句柄,整数型,,欲取颜色值所在窗口的句柄.参数坐标X,整数型,,欲取的颜色值在窗口中的横坐标.参数坐标Y,整数型,,欲取的颜色值在窗口中的纵坐标.子程序窗口_取颜色数,整数型,公开,取出窗口中指定范围内某种颜色的数目,失败返回-1,未找到返回0.参数窗口句柄,整数型,,指定的窗口句柄(对于最小化窗口或不可见窗口无效).参数颜色,整数型,,欲判断的十进制颜色.参数左边,整数型,可空,范围左边,默认为0.参数顶边,整数型,可空,范围顶边,默认为0.参数宽度,整数型,,范围矩形宽度.参数高度,整数型,,范围矩形高度.参数相似度,整数型,可空,可空:无误差(0-255)RGB误差值无误差是带误差效率一半.子程序窗口_取最多色,整数型,公开,取出窗口中指定范围内最多的一种颜色值,返回十进制颜色值,失败返回-1.参数窗口句柄,整数型,,指定的窗口句柄(对于最小化窗口或不可见窗口无效).参数左边,整数型,可空,范围左边,默认为0.参数顶边,整数型,可空,范围顶边,默认为0.参数宽度,整数型,,范围矩形宽度.参数高度,整数型,,范围矩形高度.参数数目,整数型,参考可空,返回该颜色的数目.子程序窗口_找色彩,识图_坐标,公开,在窗口中指定范围内查找符合条件的色彩度,返回第一个符合条件的坐标(失败或未找到返回-1坐标).参数窗口句柄,整数型,,指定的窗口句柄(对于最小化窗口或不可见窗口无效).参数色彩度低,整数型,,欲寻找色彩度范围-低位(色彩度:0-255).参数色彩度高,整数型,,欲寻找色彩度范围-高位(色彩度:0-255).参数左边,整数型,可空,寻找范围-矩形左边,默认为0.参数顶边,整数型,可空,寻找范围-矩形顶边,默认为0.参数宽度,整数型,,寻找范围-矩形宽度.参数高度,整数型,,寻找范围-矩形高度
2025/3/28 20:14:25 119KB 识图模块
1
第1章绪论第2章SAR成像原理2.1引言2.2SAR系统参数2.3单脉冲距离向处理2.4线性调频脉冲与脉冲压缩2.5SAR方位向处理2.6SAR线性测量系统2.7辐射定标2.8小结参考文献附录2A星载SAR的方位向处理第3章图像缺陷及其校正3.1引言3.2SAR成像散焦3.2.1自聚焦方法3.2.2自聚焦技术的精确性3.2.3散射体性质对自聚焦的影响3.3几何失真与辐射失真3.3.1物理原因及关联的失真3.3.2基于信号的MOCO方法3.3.3天线稳定性3.4残留SAR成像误差3.4.1残留的几何与辐射失真3.4.2旁瓣水平3.5基于信号的MOCO方法的改进3.5.1包含相位补偿的迭代自聚焦3.5.2较小失真的高频跟踪3.5.3常规方法与基于信号方法相结合的MOC0方法3.6小结参考文献第4章SAR图像的基本特性4.1引言4.2SAR图像信息的特质4.3单通道图像类型与相干斑4.4多视处理估计RCS4.5相干斑的乘性噪声模型4.6RCS估计——成像与噪声的影响4.7SAR成像模型的结果4.8空间相关性对多视处理的影响4.9系统引入空间相关性的补偿4.9.1子采样4.9.2预平均4.9.3插值4.10空间相关性估计:平稳性与空间平均4.11相干斑模型的局限性4.12多维SAR图像4.13小结参考文献第5章数据模型5.1引言5.2数据特征5.3经验数据分布5.4乘积模型5.4.1RCS模型5.4.2强度概率密度函数5.5概率分布模型的比较5.6基于有限分辨率成像的目标RCS起伏5.7数据模型的局限性5.8计算机仿真5.9小结参考文献第6章RCS重建滤波器6.1引言6.2相干斑模型和图像质量度量6.3贝叶斯重建6.4基于相干斑模型的重建6.4.1多视处理相干斑抑制6.4.2最小均方误差相干斑抑制……第7章RCS分类与分割第8章纹理信息提取第9章相关纹理第10章目标信息第11章多通道SAR数据的信息处理第12章多维SAR图像分析技术第13章SAR图像的分类第14章现状与前景分析
2025/3/28 18:57:23 36.01MB 合成孔径雷达 SAR雷达成像
1
共 536 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡