之前找了很久才找到了,传上来更大家共享下,希望对大家有帮助,欢迎下载或者永久保存。
ie10,包含32位和64位的更新包和安装包,有详细的安装说明,亲测有效,分值小,分享给大家一起使用,共同学习!
2025/11/7 12:02:05 784B Ie 10 32位,64位离线安
1
1、appium在androidV7.0系统上运行时报错Failure[INSTALL_FAILED_ALREADY_EXISTS:Attempttore-installio.appium.settingswithoutfirstuninstalling.];
2、原因是appium的uiautomator版本与androidV7.0不适配;
3、网上查找资料修改android.js和adb.js两个文件可以解决问题,自己试了网上给出的部分代码存在错误,自己修改后亲测可行,直接分享修改后文件出来;
4、俩文件路径在压缩包内readme.txt
2025/11/7 10:01:16 18KB appium
1
根据提供的信息,我们可以深入探讨信号检测理论中的几个关键概念及其应用。
这部分内容主要涉及了信号检测理论的基础知识、数学表达式及其应用场景。
###一、信号检测理论基础####1.基本概念-**信号检测理论**(SignalDetectionTheory,SDT)是一种在噪声背景下识别信号的方法论。
它主要用于分析如何从背景噪声中识别出有用的信息或信号。
SDT不仅被广泛应用于通信工程领域,在心理学实验、医学诊断等方面也有着重要的应用价值。
-**解析信号**和**复指数形式信号**是两种表示信号的不同方式。
解析信号能够更好地表示信号的实部和虚部,而复指数形式则更便于进行频域分析。
####2.数学公式解析-第一个例题中涉及到的公式是关于信号的傅里叶变换。
公式中出现了三角函数和积分运算,这些运算主要用于计算信号的能量分布或者频谱特性。
-第二个例题中的解析展示了如何通过积分来求解信号的能量,并且提到了信号的时间宽度和频率宽度的概念。
这些参数对于理解信号的时域和频域特性至关重要。
-第三个例题则进一步讨论了线性调频信号的特性和参数计算方法。
###二、具体例题解析####CH1例题解析#####例1该例题通过一系列复杂的积分运算来求解信号的能量。
其中,通过将信号表示为三角函数的形式,利用三角恒等式进行了化简处理。
最终得出了信号的能量表达式。
#####例2此例题关注于信号的时间宽度和频率宽度计算。
通过对信号的积分操作,可以得到信号的平均值和能量密度,进而求得信号的时间宽度和频率宽度。
这些参数对于评估信号的时域和频域特性非常关键。
#####例3例题3中介绍了线性调频信号的一些重要参数,包括等效带宽、线性调频常数和调相斜率等。
这些参数对于了解线性调频信号的特点及其在实际应用中的表现至关重要。
####CH2例题解析#####例1CH2的第一道例题主要涉及了信号的卷积运算。
通过将输入信号与系统的冲激响应进行卷积,可以得到系统的输出信号。
例题中给出了具体的计算过程,包括如何对信号进行分段处理以及如何计算各个分段的卷积结果。
#####例3第三个例题虽然没有给出完整的内容,但可以推测其可能讨论了信号处理中的某种特定技术或算法。
这部分内容通常会更加深入地探讨信号的特性分析方法,例如信号的时频分析、滤波器设计等。
###三、总结信号检测理论是现代通信系统的核心之一,对于理解和优化信号传输具有重要意义。
通过对上述例题的解析,我们可以看到信号检测理论涉及到了大量的数学工具和技术,如傅里叶变换、积分运算、信号卷积等。
这些工具和技术不仅有助于我们深入了解信号的本质特征,也为解决实际问题提供了有力的支持。
未来随着通信技术的发展,信号检测理论的应用将会更加广泛,对于这一领域的深入研究也将变得越来越重要。
2025/11/6 22:49:16 171KB
1
传智7天Hadoop培训视频,绝对不加密的之前我找了很多资源,下下来都要加QQ,然后付钱什么的,很烦,所以,我买了这个资源,就共享给大家。
如果链接失效,就评论给我,我补链接!谢谢大家我还有其他大数据分享、
2025/11/6 21:31:47 48B Hadoop 吴超
1
我只是个搬运工乐玩插件9.09.ec。
目前最新且没有挖矿cpu占用少大神绿化版沙箱测试零威胁有需要的小伙伴可以自行测试后使用为了更多人安心使用如果下载好用请给个好评哦
1
海思EC2108“死砖复燃”全过程图解我的海思EC2108由于刷机时停电,造成“死砖”,(详情:刷固件时停电,彻底杯具了。
(在iptv的帮助下已经修复了,耶!)http://www.freedmx.net/forum.php...4&fromuid=33375),现将修砖过程整理GX,给大家提供参考。
1、准备过程:购买TTL刷机板,可以淘宝“TTL线”,搜出一堆,我买的是最便宜那种,PL2303HX,价格是5.8元,同时买了6根杜邦线,加运费一共花了14.7元。
2025/11/6 4:21:36 3.7MB 海思EC2108
1
详细的介绍了电梯系统运行的过程,从理论上给出了电梯运行的算法和图解
2025/11/5 21:43:48 307KB 电梯运行系统
1
模拟腾讯微信语音通信功能,在计算机上实现一个点对点语音通信系统,通信双方可语音聊天(双工方式)。
语音发送方运用windows系统语音采集接口采集相应格式(比如PCM)的语音数据,通过UDP协议发送给语音接收方计算机,接收方调用windows的语音播放接口回放该语音数据,反之亦然。
语音数据收发双方应定义一个简单的通信协议来交换双方的语音编解码的格式和语音数据包,统计语音数据的速率、总包数、丢包率等信息。
音量大小在程序界面上可调节,建议采用图形化的程序界面。
2025/11/5 18:14:58 19K C# 语音聊天程序
1
主、从机程序都是用查询方式的工程。
地址按键可以选择发送数据至不同的从机。
从机收到主机发送的数据后,将会显示收到数据,并将该数据反馈给主机。
主机收到从机反馈数据后,显示在数码管上。
2025/11/5 16:07:30 351KB RS485 双向通信 多机通讯 Proteus仿真
1
**FCSAN存储网络简介**光纤通道(FC,FibreChannel)存储区域网络(SAN,StorageAreaNetwork)是一种专为高效传输大量数据而设计的网络架构,特别适用于企业级数据中心和大型服务器环境。
它将存储设备从传统的局域网(LAN)中分离出来,形成一个独立的高速网络,用于数据存储和备份。
FCSAN提供了高带宽、低延迟、高可靠性的特性,确保关键业务数据的安全性和可用性。
**FCSAN存储网络入门**构建FCSAN的基础是光纤通道硬件,包括光纤通道交换机、HBA(HostBusAdapter,主机总线适配器)和存储设备,如磁盘阵列或存储虚拟化设备。
HBA是服务器连接到FCSAN的接口,负责在服务器和存储系统之间传输数据。
交换机则如同路由器一样,管理数据在不同端口间的流动,确保数据包的正确路由。
FCSAN的配置通常包括以下步骤:1.**规划网络拓扑**:根据数据中心规模和需求,选择合适的交换机数量、类型和布局。
2.**设置HBA和交换机**:安装HBA驱动,配置交换机端口,建立Zoning(区域)来控制数据流量和访问权限。
3.**连接存储设备**:通过光纤通道线缆将HBA连接到交换机,再将交换机连接到存储设备。
4.**初始化和配置存储**:设置RAID级别,创建LUN(逻辑单元号),分配给服务器进行挂载。
**FCSAN配置**配置FCSAN时,需要考虑以下关键要素:-**zoning策略**:通过zoning来隔离和管理不同服务器对存储设备的访问,防止数据冲突和安全问题。
-**WWNN和WWPN**:每个HBA都有全球唯一的名字(WorldWideNodeName)和端口名字(WorldWidePortName),用于识别和管理网络中的设备。
-**多路径**:配置多条到存储的路径以实现负载均衡和故障切换,提高系统的可用性。
-**服务质量(QoS)**:根据业务优先级设置带宽分配,确保关键应用的性能。
**日常巡检**对于FCSAN的日常运维,主要关注以下方面:1.**监控性能**:检查交换机和存储设备的I/O速率、带宽利用率,确保系统运行正常。
2.**错误检测**:查看日志,发现并解决错误,如丢包、帧错等。
3.**链路状态**:确认所有连接是否稳定,及时处理链路故障。
4.**Zoning和权限检查**:确保Zoning策略符合安全需求,防止未经授权的访问。
5.**备份与恢复**:定期执行数据备份,测试恢复流程,以防数据丢失。
**总结**FCSAN存储网络是企业级数据中心的核心组成部分,它提供了高性能、高可靠性的数据存储解决方案。
了解其基本原理、配置方法以及日常运维要点,对于确保数据中心的稳定运行至关重要。
在实际操作中,还需要不断学习和适应新技术,如FCoE(FCoverEthernet)、NVMeoverFabrics,以满足不断增长的存储需求和性能挑战。
2025/11/5 15:03:46 6.61MB
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡