准确了解用户对视频热度的选择(PP)的差异性对丰富的用户画像,提高个性化服务精确度和优化产品提供方收益等方面大有替代益。
目前只有少量的统计学方面的研究,在数据稀疏或者大规模启动的情况下不确定性的正确性。
基于大规模商业在线视频流媒体系统的用户观影数据,此处对用户的视频热度替换进行了多角度刻画分析,着重提出了两个基于协同过滤(CF)的算法来预测用户对视频热度的替代。
具体贡献如下:1)通过空模型假设对比实验,发现并非所有用户都偏好热度高的视频;
大多数用户有较广泛的优选范围,但用户之间2)设计了基于最近邻居的(NNI)和基于矩阵分解的(MFI)用户热度首选预测模型。
实验证明,当数据稀疏度低于48%的时候,用NNI或MFI算法初始化所得的用户热度替代比传统方法统计所得的结果更准确。
越稀疏的情况下,这种优势越明显。
此工作对视频系统中推荐服务设计和用户体验优化具有参考意义。
2024/8/10 16:42:34 224KB 研究论文
1
可以仿真BA模型的建立,输出网络图像,得到稀疏矩阵
2024/8/5 9:38:56 2KB 无标度网络 BA模型 MATLAB
1
分别用三元组和十字链表两种方法实现了稀疏矩阵的相加和相乘
2024/7/26 17:56:19 7KB 稀疏矩阵 三元组 十字链表
1
针对中文短文本篇幅较短、特征稀疏性等特征,提出了一种基于隐含狄利克雷分布模型的特征扩展的短文本分类方法。
在短文本原始特征的基础上,利用LDA主题模型对短文本进行预测,得到对应的主题分布,把主题中的词作为短文本的部分特征,并扩充到原短文本的特征中去,最后利用SVM分类方法进行短文本的分类。
实验表明,该方法在性能上与传统的直接使用VSM模型来表示短文本特征的方法相比,对不同类别的短文本进行分类,都有不同程度的提高与改进,对于短文本进行补充LDA特征信息的方法是切实可行的。
2024/7/6 6:33:32 1.14MB LDA 短文本分类
1
稀疏线性方程组求解Ax=b是很多科学计算与工程应用的核心问题,例如天气预报、流体力学仿真、经济模型模拟、集成电路仿真、电气网络仿真、网络分析、有限元方法等。
本报告以集成电路仿真中的极稀疏矩阵LU分解为例,讲述稀疏LU分解在GPU上的并行方法、以及性能优化方法。
2024/6/19 14:31:45 1.46MB GPU 稀疏矩阵
1
基于稀疏表示的人脸识别系统设计采用sparse中的L1-normminimization基于经典入门论文《facerecognitonviasparserepresentation》MATLAB程序,完全运行,包含基本GUI设计和完整代码可以参考说明一步步跑下来,希望能帮助大家
2024/6/18 7:33:27 13.37MB sparse 人脸识别 MATLAB 完整运行
1
数据结构小代码,改自《数据结构与算法分析C++版》源代码1.编写使用freelist的带头、尾结点的双向链表类的定义,实现双向链表的基本操作。
2.利用双向链表实现2个一元稀疏多项式的加法运算,运算结果得到的链表要求按照指数升序有序,并遍历输出指数升序、指数降序的多项式。
2024/6/12 2:41:24 1.19MB datastructur
1
matlab开发-find3dnormals和曲率。
稀疏点云的快速法向和曲率估计
2024/6/7 5:26:19 3KB 图像处理与计算机视觉
1
收到一些国内外朋友的来信,咨询关于容积卡尔曼滤波的问题(CKF),大家比较疑惑的应该就是generator或G-orbit的概念。
考虑到工作以后,重心必然转移,不可能再像现在这样详细的回答所有人的问题,更不可能再帮大家改论文、写(或改)代码了,请各位谅解!在此,上传一个CKF和五阶CKF用于目标跟踪的示例代码,代码中包含详细的注释,希望对大家以后的学习和研究有所帮助!此代码利用C++对五阶CKF的第二G-轨迹进行了封装(Perms.exe),能理解最好,如果无法理解,也无须深究其具体构造方法!可执行文件底层是用字符串+递归算法实现的,理论上可以应用于任意维模型。
但考虑到递归算法可能存在的栈溢出,重复压栈出栈带来的时间消耗等问题,我们利用矩阵的稀疏性和群的完全对称性,并通过分次调用,来尽可能减少栈的深度,提高计算速度。
容积点一次生成后,可以一直使用,通过对50维G-轨迹的生成速度(CoreT6600@2.2GHz)进行测试,包含数据读写在内的速度约为1.5秒,速度尚可。
而目前为止,本人尚未遇到达到甚至超过50维的系统,因此,暂时不作算法层面的优化。
注意:Perms.exe可以用于任意维模型,将可执行文件复制至工作目录下,调用时选择N/n,并输入你的模型维数,即可生成所需的第二G-轨迹。
如果无法理解相关的概念,请参考示例代码,并记住如何使用即可~~~相关理论基础及所用模型,请参考以下文献:References(youmayciteoneofthearticlesinyourpaper):[1]X.C.Zhang,C.J.Guo,"CubatureKalmanfilters:Derivationandextension,"ChinsesPhysicsB,vol.22,no.12,128401,DOI:10.1088/1674-1056/22/12/128401[2]X.C.Zhang,Y.L.Teng,"AnewderivationofthecubatureKalmanfilters,"AsianJournalofControl,DOI:10.1002/asjc.926[3]X.C.Zhang,"Cubatureinformationfiltersusinghigh-degreeandembeddedcubaturerules,"Circuits,Systems,andSignalProcessing,vol.33,no.6,pp.1799-1818,DOI:10.1007/s00034-013-9730-0
2024/5/26 2:39:13 239KB CKF 五阶CKF 目标跟踪
1
交替方向乘子法是用于求解低秩和稀疏最优化问题的有效算法,这个包提供了交替方向乘子法的matlab代码。
Thispackagesolvesseveralsparseandlow-rankoptimizationproblemsbyM-ADMMproposedinourwork
1
共 212 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡