基于FPGA的高速数据采集系统的设计,设计系统的建立和软件的调试。
2023/7/20 12:40:23 190KB FPGA高速采集
1
基于单片机的多路数据采集系统设计毕业论文
1
ADuC7061单片机中文手册,ADuC7060/ADuC7061系列是完全集成的8kSPS、24位数据采集系统,在单芯片内集成高性能多通道-型模数转换器(ADC)、16位/32位ARM7TDMI®MCU和Flash/EE存储器。
2023/7/16 17:05:35 2.11MB ADuC7061
1
书名:《VisualC#.NET串口通信及测控应用典型实例》(电子工业出版社.李江全.邓红涛.刘巧.李伟)PDF格式扫描版,全书分为8章,共369页。
2012年5月出版。
全书压缩打包成3部分,这是第3部分内容简介本书从工程应用的角度出发,通过8个典型应用实例,包括PC与PC、PC与单片机、PC与PLC、PC与远程I/O模块、PC与智能仪器、PC与无线数传模块、Pc与USB数据采集模块等组成的测控系统,利用SerialPort控件和MSComm控件编写C#.NET串口通信程序,并对计算机测控系统中的4类典型应用((模拟量输入(AI)、模拟量输出(AO)、数字量输入(DI)和数字量输出(DO)的程序设计方法进行了详细的讲解。
目录第1章PC与PC串口通信1.1串口通信概述1.1.1串口通信的基本概念1.1.2RS-232C接口标准1.1.3RS-422/485接口标准1.1.4串口通信线路连接1.1.5PC中的串行端口1.1.6虚拟串口的使用1.2VC++.NET串行通信控件与API函数1.2.1MSComm控件的使用1.2.2SerialPort控件的使用1.2.3串行通信API函数1.3PC与PC串口通信实例1.3.1两台PC串口通信1.3.2一台PC双串口互通信第2章PC与单片机串口通信2.1典型单片机开发板简介2.1.1单片机测控系统的组成2.1.2单片机开发板B的功能2.1.3单片机开发板B的主要电路2.2PC与单片机串口通信实例2.2.1PC与单个单片机串口通信2.2.2PC与多个单片机串口通信2.3PC与单片机串口通信测控应用实例2.3.1模拟量输入2.3.2模拟量输出2.3.3开关量输入2.3.4开关量输出第3章PC与西门子PLC串口通信3.1西门子PLC模拟量扩展模块与通信协议3.1.1西门子PLC模拟量输入模块3.1.2西门子PLCPPI通信协议3.2PC与西门子PLC串口通信测控应用实例3.2.1模拟量输入3.2.2模拟量输出3.2.3开关量输入3.2.4开关量输出第4章PC与三菱PLC串口通信4.1三菱PLC特殊功能模块与通信协议4.1.1FX2N系列PLC的特殊功能模块4.1.2三菱PLC编程口通信协议4.2PC与三菱PLC串口通信测控应用实例4.2.1模拟量输入4.2.2模拟量输出4.2.3开关量输入4.2.4开关量输出第5章PC与分布式I/O模块串口通信5.1典型分布式I/O模块简介5.1.1集散控制系统的结构与特点5.1.2ADAM4000远程数据采集控制系统5.1.3ADAM4000系列模块简介5.1.4ADAM4000系列模块的软件安装5.2PC与分布式I/O模块串口通信测控应用实例5.2.1模拟量输入5.2.2模拟量输出5.2.3数字量输入5.2.4数字量输出第6章PC与智能仪器串口通信6.1典型智能仪器简介6.1.1智能仪器的结构与特点6.1.2XMT-3000A型智能仪器的通信协议6.2PC与智能仪器串口通信测控应用实例6.2.1PC与单台智能仪器温度测控6.2.2PC与多台智能仪器温度测控第7章PC与无线数据传输模块串口通信7.1典型无线数传模块简介7.1.1无线数传技术概述7.1.2DTD46X系列无线数传模块7.2PC与无线数传模块串口通信测控应用实例7.2.1设计任务7.2.2线路连接7.2.3利用C51语言实现基于DS18B20的单片机温度测控7.2.4利用汇编语言实现基于DS18B20的单片机温度测控7.2.5利用VC++.NET实现PC与无线数传模块温度测控第8章USB串行总线模块测控应用8.1USB总线在数据采集系统中的应用8.1.1USB总线及其数据采集系统的特点8.1.2采用USB传输的数据采集系统8.1.3典型USB数据采集模块及应用8.1.4VC++.NET数据采集与控制的方式8.2PC与USB数据采集模块测控应用实例8.2.1模拟量输入8.2.2模拟量输出8.2.3数字量输入8.2.4数字量输出参考文献
2023/7/14 14:23:58 40.53MB 串口通信
1
1、设计内容:对8路0—5V的模拟电压进行循环采集。
2、基本要求:①对8路模拟输入实行循环采集,每路连续采集16次,取平均值;
②输入量与显示误差<1%;
③CPU以中断方式读取采集数据。
3、发挥部分:①分别设定每一路的上限值,若采集的平均值超过该界限值,则对应通道的指示灯闪烁10次以后一直亮,以示警告;
②能对输出控制信号进行调节:对于第0路,则设定一个下限和一个上限,当采集的平均值小于下限时,输出一个较大的模拟信号作为向大的方向的调节控制信号;
当采集的平均值大于上限时,输出一个较小的模拟信号作为向小的方向调节的控制信号,且两种超限指示灯均闪烁10次后亮;
③速度上实现高精度采集;
④提高系统精度;
⑤设计抗干扰性;
2023/6/15 4:15:37 470KB 数据采集系统
1
含有全部工程文件,使用C++Builder6.0完成开发,可重新编译运行。
创作权归曹润泽所有,使用者不可用于商业目的,否者后果自负。
本软件功能:上层的应用软件的模块主要有:初始化模块、用户设置模块、COM串行通信数据采集模块、数据矫正模块、数据绘图模块、数据存储模块、网络传输模块、功能整合模块等。
其中网络传输模块又可以根据工作模式分为服务端网络传输模块和客户端网络传输模块。
用户设置模块:主要是通过用户设置设置窗口中的信息来完成软件的设置,这些可以设置的变量都非常重要,包括基本设置:采样频率设置、COM端口选择、警告限设置(是否使用警戒限、高警戒限的大小、低警戒限的大小)、矫正表设置(是否使用矫正表、选择矫正表);
绘图设置:显示点数设置、曲线宽度设置、曲线颜色设置(高警戒曲线的颜色、正常时曲线颜色、低警戒曲线的颜色设置);
网络设置:是否使用网络传输、网络基本设置(服务端选择、客户端选择、端口号设置、服务端IP设置)。
COM串行通信数据采集模块:用于从串行口中读取数据。
本系统使用专门用于RS-232串行通信通信控制的控件TComm控件来完成COM通信。
数据矫正模块,顾名思义,是用于对数据进行矫正的。
若需要矫正数据,必须使用矫正表,矫正表实际上只是个用户可自定义的文本文件,但在编写矫正表文件时必须按照一定规则进行编写。
数据绘图模块:对于采集数据的实时绘图是通过BorlandC++Builder6.0自带的功能强大的TChart控件来实现。
数据存储模块:该模块除了使用了编译器所提供的几个基本数据类型之外,基本上是使用纯C++编写(不使用编译器的控件)。
数据存储并未使用数据库存储,而是使用文本文件的方式对所有采集到的时间进行存储,存储时要先把采样信息写入到数据文件的头部,包括创建时间、采样起始时间、采样持续时间、采样结束时间、采样频率、采样数等等信息,之后就是所采集的数据,采样数据包括数值和采集的该点所对应的时间,以及该点是否被警告(过低用!Low表示、正常用-表示、过高用!High表示)。
网络传输模块:网络传输模块是本数据采集系统比较新颖的模块,可以使用互联网进行速率较低的数据传输,考虑到网络传输的延迟,故设计时设置的采样速率比较低。
网络传输模块实际上是使用Socket编程实现的,在BorlandC++Builder中有封装好的用于网络通信的控件:TServerSocket和TClientSocket。
2023/6/10 21:49:40 2.62MB 数据采集 串行通信 C++ Builder
1
本包含三个文件,分别介绍了单片机实现的头部采样数据采集系统、基于C8051F020单片机的步进电机驱动器、基于C8051F020单片机数据采集与串口通信的分析,学习C8051F020的朋友可以参考。
2023/6/8 22:03:45 655KB C51F 020
1
基于Arduino与LabVIEW的数据采集系统.vi
2023/6/5 7:44:49 41KB Arduino
1
LabVIEW是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。
LabVIEW是一个面向最终用户的工具。
它可以增强的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。
使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率。
基于LABVIEW的流水灯设计,可以实现三灯,单灯,全灯等功能,能够有效的进行数据的反映。
2023/6/3 11:05:09 15KB labview 跑马灯 流水灯
1
制作一个数据采集系统,实现读取单个PLC中DB中的某个字,并以十进制的方式存入excel表格中。
应用:采集设备运行中某一个关键参数的值,通过对参数的分析,实现对设备运行状态的分析。
1->表格的创建以及插入的内容以及的sheet表名,目前还不能做到灵活多变。
只能写死在代码中。
后期可根据需要深入研究。
2->对于每个插入的值的含义以及插入时间,参考条目1,需要自己修改代码。
2023/5/17 12:01:12 546KB 西门子 数据采集 Excel Sharp7
1
共 63 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡