可用于ENVI或者其他遥感数字图像处理的多光谱图像拼接数据
2025/3/1 13:47:39 54.5MB ENVI 多光谱 拼接数据
1
数字图像处理使用matlab进行采样量化,内含.m源代码,实验报告详细内容
2025/3/1 13:02:03 2.94MB matlab
1
众所周知,移动开发已经来到了后半场,为了能够在众多开发者中脱颖而出,我们需要对某一个领域有深入地研究与心得,对于Android开发者来说,目前,有几个好的细分领域值得我们去建立自己的技术壁垒,如下所示:1、性能优化专家:具备深度性能优化与体系化APM建设的能力。
2、架构师:具有丰富的应用架构设计经验与心得,对AndroidFramework层与热门三方库的实现原理与架构设计了如指掌。
3、音视频/图像处理专家:毫无疑问,掌握NDK,深入音视频与图像处理领域能让我们在未来几年大放异彩。
4、大前端专家:深入掌握Flutter及其设计原理与思想,可以让我们具有快速学习前端知识的能力。
2025/2/25 12:38:20 25.94MB android 性能优化 学习手册 安卓学习
1
《基于FPGA的数字图像处理原理及应用》第五章系统仿真Qt测试程序&FPGA;程序
2025/2/23 14:33:54 66.23MB FPGA 数字图像处理 Qt 系统仿真
1
数学建模常用程序包,包括神经网络、图论算法、小波预测、元胞自动机、回归预测、灰色预测、聚类分析、SVM、时间序列、粒子群优化、模拟退火、遗传算法、主成分分析、图像处理等数十种常用代码,可以直接运行。
2025/2/22 21:02:50 18.4MB 数学建模 程序包
1
何东健主编《数字图象处理》一书的书附光盘内容,比较完整,源代码全
2025/2/22 14:30:54 19.68MB 数字图象处理 C++
1
非下采样Contourlet变换(NonsubsampledContourletTransform,NSCT)是一种多分辨率分析方法,它结合了小波变换的多尺度特性与Contourlet变换的方向敏感性。
NSCT在图像处理和计算机视觉领域有广泛的应用,如图像压缩、图像增强、噪声去除和图像分割等。
这个“NSCT变换的工具箱”提供了实现NSCT算法的软件工具,对于研究和应用NSCT的人来说,是一个非常实用的资源。
非下采样Contourlet变换的核心在于其能够提供多方向、多尺度的图像表示。
与传统的Contourlet变换相比,NSCT不进行下采样操作,这避免了信息损失,保持了图像的原始分辨率。
这种特性使得NSCT在处理高分辨率图像时具有优势,特别是在保留细节信息方面。
NSCT工具箱通常包含以下功能:1.**NSCT变换**:对输入图像执行非下采样Contourlet变换,将图像分解为多个方向和尺度的系数。
2.**逆NSCT变换**:将NSCT系数重构回原始图像,恢复图像的完整信息。
3.**图像压缩**:利用NSCT的系数对图像进行编码,实现高效的图像压缩。
由于NSCT在高频部分有更好的表示能力,因此在压缩过程中可以有效减少冗余信息,提高压缩比。
4.**图像增强**:通过调整NSCT系数,可以对图像进行有针对性的增强,比如增强边缘或抑制噪声。
5.**噪声去除**:利用NSCT的多尺度和方向特性,可以有效地分离噪声和信号,实现图像去噪。
6.**图像分割**:在NSCT域中,图像的特征更加明显,有助于进行图像区域划分和目标检测。
该工具箱可能还包括一些辅助函数,如可视化NSCT系数、性能评估、参数设置等功能,方便用户进行各种实验和分析。
使用这个工具箱,研究人员和工程师可以快速地实现NSCT相关的算法,并在实际项目中进行测试和优化。
在使用NSCT工具箱时,需要注意以下几点:-输入图像的尺寸需要是2的幂,因为大多数NSCT实现依赖于离散小波变换,而DWT通常要求输入尺寸为二进制幂。
-工具箱可能需要用户自行配置或安装依赖库,例如MATLAB的WaveletToolbox或其他支持小波运算的库。
-NSCT变换的计算复杂度相对较高,特别是在处理大尺寸图像时,可能需要较长的计算时间。
-在处理不同类型的图像时,可能需要调整NSCT的参数,如方向滤波器的数量、分解层数等,以获得最佳性能。
"NSCT变换的工具箱"是一个强大的资源,对于那些希望探索非下采样Contourlet变换在图像处理中的潜力的人来说,这是一个必不可少的工具。
通过深入理解和熟练使用这个工具箱,可以进一步发掘NSCT在各种应用中的价值。
2025/2/20 0:32:26 132KB NSCT工具箱
1
MATLAB工具箱大全-数字图像处理工具箱DIPUMToolbaxV1.1.3
2025/2/18 6:32:11 168KB DIPUM 数字图像处理 matlab
1
有关小波方面的仿真程序(matlab),涉及小波相关应用处理,多为小波变换,小波正交变换,小波图像处理,小波信号降噪等
2025/2/14 8:47:57 2.96MB 小波 正交变换 图像处理 信号降噪
1
本书详细介绍了利用Delphi进行图像处理的技术,常用的图像格式,以及Delphi图像处理的常用方法Scanline。
本书共8章,内容包括图像的基本概念、图像的点运算、图像的几何变换、图像的颜色系统、图像的增强、图像代数与分隔、图像的特效、图像处理综合实例,前面7章比较详细地介绍了图像处理的内容,同时提供了非常详细的程序代码,第8章是编者自己创作或者平时收集的一些经典的例子。
本书提供了丰富的源代码,并提供了详细的注释,为读者的学习提供方便。
第1章图像的基础知识1.1图像的基本概念1.2三基色原理和图像的输入1.3图像的几种常见的格式1.4图像格式转换器实例1.5图像浏览器实例1.6Delphi图像处理中Scanline的用法第2章图像的点运算2.1图像灰度处理2.2图像的灰度直方图2.3图像的二值化2.4图像亮度处理2.5图像对比度处理2.6饱和度调节2.7图像着色2.8图像反色2.9图像曝光2.10Gamma校正2.11迷人的万花筒2.12位图的反走样2.13位图的与、或操作2.14创建大型位图以及统计位图颜色2.15位图的噪声调节第3章图像的几何变换3.1图像的平移3.2图像的缩放3.3图像的旋转3.4图像的镜像3.5图像扭曲3.6图像的波浪效果3.7远视图3.8裁剪和合并第4章图像的颜色系统4.1颜色的基本概念4.2颜色空间简介4.3颜色空间的转换4.4亮度/饱和度调整4.5通道与模式4.6RGB颜色调整4.7特殊色彩的实现4.8颜色量化与减色4.9颜色混合第5章图像的增强5.1图像增强概述5.2灰度线性变换5.3灰度非线性变换5.4灰度直方图拉伸5.5图像锐化与图像平滑5.6伪彩色增强5.7中值滤波第6章图像代数与图像分割6.1图像的腐蚀6.2图像的膨胀6.3图像的结构开和结构闭6.4图像的细化6.5图像的边缘检测6.6图像的Hough变换6.7图像的轮廓提取6.8图像的识别和模板匹配第7章图像的特效处理7.1图像的滑入和卷帘显示效果7.2图像的淡入淡出效果7.3扩散效果7.4百叶窗效果和马赛克效果7.5交错效果7.6浮雕效果7.7图像的中心渐出和渐入效果7.8图像的雨滴效果和积木效果第8章综合实例8.1利用Delphi实现桌面变换8.2图片文件的加密解密8.3自定义光标的实现8.4基于Delphi的图像漫游8.5用Delphi实现屏幕图像捕捉8.6图片存取到流以及从流中复原8.7Delphi图像处理在纺织检测中的应用8.8Photoshop中流动蚂蚁线的实现8.9用Delphi读取JPEG文件的缩览图8.10Delphi数据压缩/解压缩处理8.11特大位图的快速显示8.12Photoshop中的喷枪实现8.13颜色填充8.14位图与组件8.15颜色拾取器8.16位图的打印8.17Delphi图像处理在交通中的应用——车牌识别8.18位图文件信息写到文本文件以及恢复8.19放大镜8.20调色板创建及应用8.21图像的局域网传输8.22图像纵横比率最佳调节8.23JPEG格式图片错误信息显示8.24JPG图片存取到数据库8.25基于小波变换的JPEG2000压缩实现8.26傅里叶变换
2025/2/13 14:22:45 16.48MB delphi教程
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡