TwinCAT3入门教程,从安装到扫描从站,最后到成功控制驱动器,层层递进,希望可以帮助到希望学习EtherCAT的朋友。
2025/5/18 19:16:26 15.19MB EtherCAT TwinCAT3
1
MATLAB-从网上收集的各种车牌识别多个程序打包。
有神经网络和模板识别
2025/5/18 19:45:47 6.28MB MATLAB 车牌识别
1
独立分量分析(}r}d}}}ndent}}mp}}}}tanal}}i},}CA)是信号处理领域在20世纪90年代后期发展起来的一项新处理方法。
顾名思义,它的含义是把信号分解成若干个互相独立的成分。
如果信号本来就是由若干独立信源混合而成的,我们自然希望能恰好把这些信源分解开来。
从原理上说,只靠单一通道观察是不可能作这样的分解的,必需借助于一组把这些信源按不同混合比例组合起来的多通道同步观察。
换句话说,ICA是属于多导信号处理的一种方法。
但是把一组观察信号分解成若干独立成分,分解结果肯定不是惟一的。
因此分解总要施加一些约束条件,使答案接近于所期望的结果。
ICA的发展是和盲信源分离(blindsourceseparation,BSS)紧密联系的。
BSS的简单含义如图1-一1所示。
它的任务是只由多通道系统的输出数据X来判断其输入S和系统的传递函数H。
所谓“盲”是指原理上它不要求对S和H具有先验知识。
实际上任务的解答显然不是惟一的,因此免不了还是需要一些假设。
一般至少需要假设多通道输人S中各分量互相独立、零均值且方差为1。
不难看出,BBS问题的提法和ICA十分接近,只是前者的研究范畴更宽,处理手段也更多些。
2025/5/18 16:17:27 19.34MB 独立分量分析
1
苹果高光谱图像数据集用于纯苹果和施肥苹果的高光谱数据集关于数据集用于测量所用化学物质水平的纯苹果和施肥苹果的高光谱数据集。
数据集由各种苹果的高光谱图像组成。
分为三大类:1.“新鲜”-从市场直接购买的苹果图像2."低浓度”-苹果浸入低浓度杀真菌剂/杀虫剂溶液即1克或1毫升肥料兑1升水)的图像,以及3.高浓度“_苹果浸入低浓度杀真菌剂/杀虫剂溶液(即3克或3毫升肥料兑1升水)的图像,以及默认情况下,高光谱图像保存为.bil格式。
此数据集以.tif格式给出。
整个数据集被分类为三个folders.1Apple_Samples,2.Fungicide_Apple3.lnsecticide_AppleApple_Samples文件夹由两个文件夹组成:monostar和nativo。
“Monostar”被进一步分为四个文件夹,总共有207张图片。
"Nativo"由=个文件夹组成,总共73张图片。
杀菌剂苹果由162张图片组成,分为三类,即新鲜苹果、低浓度溶液浸泡的苹果和高浓度溶液浸泡的苹果。
本试验所用的杀菌剂是NATIVO。
同样,杀虫剂苹果由175张图片组成,也分为三类
2025/5/18 9:08:56 761.24MB 数据集
1
随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。
本文介绍了医护人员排班系统的开发全过程。
通过分析医护人员排班系统管理的不足,创建了一个计算机管理医护人员排班系统的方案。
文章介绍了医护人员排班系统的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。
本医护人员排班系统管理员,医护。
管理员功能有个人中心,医院信息管理,医护信息管理,医护类型管理,排班信息管理,排班类型管理,科室信息管理,投诉信息管理。
医护人员可以修改自己的个人信息,查看自己的排班信息,查看我的收藏信息。
因而具有一定的实用性。
本站是一个B/S模式系统,采用SpringBoot框架,MYSQL数据库设计开发,充分保证系统的稳定性。
系统具有界面清晰、操作简单,功能齐全的特点,使得医护人员排班系统管理工作系统化、规范化。
本系统的使用使管理人员从繁重的工作中解脱出来,实现无纸化办公,能够有效的提高医护人员排班系统管理效率。
2025/5/12 17:19:02 15.44MB spring boot spring boot
1
RAID130是戴尔PowerEdgeT130塔式服务器中的一种磁盘阵列技术,它在数据存储和服务器性能方面起着至关重要的作用。
这个“RAID130安装驱动包”包含了适用于不同Windows操作系统的驱动程序,确保用户能够在各自的系统环境下正确配置和使用RAID130功能。
我们来详细了解一下RAID130。
RAID,全称为冗余磁盘阵列(RedundantArrayofIndependentDisks),是一种将多个硬盘组合在一起以提高数据存取速度、提供数据冗余或两者兼有的技术。
RAID130是戴尔特有的一个级别,它结合了RAID1(镜像)和RAID0(条带化)的特点。
在RAID130配置中,数据被条带化到两个镜像对中,每个镜像对包含两个硬盘。
这意味着数据被同时写入四块硬盘,提供了极高的数据安全性,因为即使两块硬盘故障,系统仍能从剩余的硬盘中恢复数据。
驱动程序是计算机硬件与操作系统之间通信的关键组件,它们允许操作系统识别并控制硬件设备。
在安装RAID130驱动时,你需要根据你的Windows系统版本选择正确的驱动包。
例如,如果你的服务器运行的是WindowsServer2016,你就需要下载兼容该系统的驱动程序。
驱动包通常包括安装向导、驱动程序文件和可能的更新工具,帮助用户轻松完成安装过程。
安装RAID130驱动的步骤大致如下:1.**下载驱动**:访问戴尔官方网站,找到对应PowerEdgeT130服务器的驱动下载页面,选择匹配的操作系统版本,下载“RAID130驱动”包。
2.**解压文件**:将下载的压缩包解压到本地文件夹,通常会得到一个包含安装程序的文件夹。
3.**关闭服务器**:在安装驱动之前,务必先关闭服务器,避免在安装过程中发生数据丢失或系统不稳定的情况。
4.**连接到RAID控制器**:通过服务器的管理接口(如iDRAC)或直接连接到服务器进行操作。
5.**运行安装程序**:打开解压后的安装文件夹,双击运行安装向导,按照屏幕上的提示进行操作。
6.**重启服务器**:安装完成后,按照提示重启服务器,使新的驱动程序生效。
7.**验证安装**:服务器重新启动后,通过戴尔的系统管理工具(如DellOpenManageServerAdministrator)检查RAID130是否已被正确识别和配置。
8.**创建RAID卷**:根据业务需求,你可以通过服务器管理工具创建RAID130卷,设置合适的大小和性能选项。
请注意,安装过程中应遵循戴尔提供的官方指南,以确保操作的准确性和安全性。
如果在安装过程中遇到问题,可以查阅戴尔的技术支持文档或者联系戴尔的客户服务获取帮助。
RAID130驱动包对于确保PowerEdgeT130服务器的数据安全和高效运行至关重要。
正确安装和配置这些驱动,能最大化利用RAID130的优势,为你的业务提供稳定可靠的存储解决方案。
2025/5/12 16:47:26 1.78MB RAID130
1
BAT机器学习面试1000题系列1前言1BAT机器学习面试1000题系列21归一化为什么能提高梯度下降法求解最优解的速度?222归一化有可能提高精度223归一化的类型231)线性归一化232)标准差标准化233)非线性归一化2335.什么是熵。
机器学习ML基础易27熵的引入273.1无偏原则2956.什么是卷积。
深度学习DL基础易38池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)40随机梯度下降46批量梯度下降47随机梯度下降48具体步骤:50引言721.深度有监督学习在计算机视觉领域的进展731.1图像分类(ImageClassification)731.2图像检测(ImageDection)731.3图像分割(SemanticSegmentation)741.4图像标注–看图说话(ImageCaptioning)751.5图像生成–文字转图像(ImageGenerator)762.强化学习(ReinforcementLearning)773深度无监督学习(DeepUnsupervisedLearning)–预测学习783.1条件生成对抗网络(ConditionalGenerativeAdversarialNets,CGAN)793.2视频预测824总结845参考文献84一、从单层网络谈起96二、经典的RNN结构(NvsN)97三、NVS1100四、1VSN100五、NvsM102RecurrentNeuralNetworks105长期依赖(Long-TermDependencies)问题106LSTM网络106LSTM的核心思想107逐步理解LSTM108LSTM的变体109结论110196.L1与L2范数。
机器学习ML基础易163218.梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?深度学习DL基础中178@李振华,https://www.zhihu.com/question/68109802/answer/262143638179219.请比较下EM算法、HMM、CRF。
机器学习ML模型中179223.Boosting和Bagging181224.逻辑回归相关问题182225.用贝叶斯机率说明Dropout的原理183227.什么是共线性,跟过拟合有什么关联?184共线性:多变量线性回归中,变量之间由于存在高度相关关系而使回归估计不准确。
184共线性会造成冗余,导致过拟合。
184解决方法:排除变量的相关性/加入权重正则。
184勘误记216后记219
2025/5/8 18:45:30 10.75MB BAT 机器学习 面试
1
PSCAD是电力系统专业必须掌握的一门学问,本书是专业介绍PSCAD的一本精细教材总共分为3部分,这是第一部分
2025/5/8 18:21:54 93.95MB PSCAD 电力系统 电磁暂态
1
格式:PDG作者:邓华出版社:人民邮电出版社出版日期:2003-09-01内容简介本书着重介绍了MATLAB在通信仿真,尤其是移动通信仿真中的应用,通过丰富具体的实例来加深读者对通信系统仿真的理解和掌握。
全书共分10章,前3章介绍MATLAB通信仿真的基础,包括Simulink和S-函数;
第4~8章分别介绍了信源和信宿、信道传输、信源编码、信道编码、信号交织以及信号调制的仿真模块及其仿真实现过程;
第9章介绍了在通信系统的仿真和调试过程中经常遇到的问题及其解决办法;
最后,第10章以cdma2000为例介绍了移动通信系统的设计和仿真。
本书适用于通信行业的大专院校学生和研究人员,既可以作为初学者的入门教材,也可以用作中高级读者和研究人员的速查手册。
第1章MATLAB与通信仿真11.1MATLAB简介11.1.1MATLAB集成开发环境21.1.2MATLAB编程语言61.2通信仿真81.2.1通信仿真的概念81.2.2通信仿真的一般步骤9第2章Simulink入门122.1Simulink简介122.2Simulink工作环境132.2.1Simulink模型库132.2.2设计仿真模型142.2.3运行仿真142.2.4建立子系统152.2.5封装子系统172.3Simulink模型库20第3章S-函数233.1S-函数简介233.1.1S-函数的工作原理233.1.2S-函数基本概念243.2M文件S-函数263.2.1M文件S-函数简介263.2.2M文件S-函数的编写示例303.3C语言S-函数463.3.1C语言S-函数简介463.3.2C语言S-函数的编写示例513.4C++语言S-函数60第4章信源和信宿664.1信源664.1.1压控振荡器664.1.2从文件中读取数据684.1.3数据源724.1.4噪声源784.1.5序列生成器854.1.6实例4.1--通过压控振荡器实现BFSK调制994.2信宿1014.2.1示波器1014.2.2错误率统计1034.2.3将结果输出到文件1054.2.4眼图、发散图和轨迹图108第5章信道1165.1加性高斯白噪声信道1165.1.1函数awgn()1165.1.2函数wgn()1185.1.3加性高斯白噪声信道模块1205.1.4实例5.1--BFSK在高斯白噪声信道中的传输性能1225.2二进制对称信道1275.2.1二进制对称信道模块1275.2.2实例5.2--卷积编码器在二进制对称信道中的性能1285.3多径瑞利衰落信道1325.3.1多径瑞利衰落信道模块1325.3.2实例5.3--BFSK在多径瑞利衰落信道中的传输性能1345.4伦琴衰落信道1385.4.1伦琴衰落信道模块1385.4.2实例5.4——BFSK在多径瑞利衰落信道中的传输性能1395.5射频损耗1425.5.1自由空间路径损耗模块1425.5.2接收机热噪声模块1445.5.3相位噪声模块1455.5.4相位/频率偏移模块1465.5.5I/Q支路失衡模块1485.5.6无记忆非线性模块149第6章信源编码1536.1压缩和扩展1536.1.1A律压缩模块1536.1.2A律扩展模块1546.1.3μ律压缩模块1556.1.4μ律扩展模块1566.2量化和编码1576.2.1抽样量化编码器1576.2.2触发式量化编码器1586.2.3量化解码器1596.2.4实例6.1--A律十三折与μ律十五折的量化误差1596.3差分编码1626.3.1差分编码器1626.3.2差分解码器1636.4DPCM编码和解码1646.4.1DPCM编码器1646.4.2DPCM解码器1666.4.3实例6.2--DPCM与PCM系统的量化噪声166第7章信道编码和交织1727.1分组编码1727.1.1二进制线性码1727.1.2二进制循环码1747.1.3BCH码176
2025/5/8 14:23:11 23.47MB matlab pdg
1
《x86/x64体系探索及编程》是对Intel手册所述处理器架构的探索和论证。
全书共五大部分,从多个方面对处理器架构相关的知识进行了梳理介绍。
书中每个章节都有相应的测试实验,所运行的实验例子都可以在真实的机器上执行。
  通过阅读《x86/x64体系探索及编程》,读者应能培养自己动手实验的能力。
如果再有一些OS方面的相关知识,基本上就可以写出自己简易的OS核心。
打包随书代码
2025/5/8 11:53:05 134.68MB x86 体系探索
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡