该程序可以实现一般缓和曲线的坐标计算,可将路线的中桩坐标、边桩坐标及曲线综合要素等输出至文本文件*.txt,便于进行数据传输。
见附件:程序hhqx.rar及使用说明.doc
2025/1/26 22:26:44 460KB 缓和曲线
1
二、设计一个语音放大电路,话筒(拾音器)的输入信号小于10,放大电路的指标;
1.输入阻抗大于100,共模抑制比大于60。
2.通带频率范围300~3。
3.最大不失真输出功率不低于1,负载阻抗,电源电压10。
2025/1/26 20:16:27 11.11MB 语音放大 电路设计 广工 multisim
1
通过定时器1输出两路PWM驱动电机,在主函数中改变占空比
2025/1/26 17:17:38 10.71MB stm32
1
木头超级字典生成器是一款集字典生成和字典修改功能于一身的超级字典工具软件。
木头字典生成器是支持超大字典生成,支持大字典分割输出,并且可随时暂停查看生成状态。
是目前功能最强大的密码字典生成器。
软件需安装MicroSoft.NETFramework2.0或以上版本。
2025/1/26 10:31:48 6.16MB 网络安全 渗透测试
1
M/M/N排队系统(多服务员排队系统)的仿真(难度系数:)多服务员排队系统在仿真上较单服务员排队系统要复杂的多,在此先对该排队系统作一些必要的假设:(1)顾客源是无穷的;
(2)排队长度没有限制;
(3)到达系统的顾客按先到先服务原则依次进入服务;
(4)服务员在仿真过程中没有休假;
(5)顾客到达时排成一队,当有服务台空闲时进入服务状态;
按照顾客到达的时间概率分布为泊松分布,顾客服务时间的长短服从负指数分布,试完成M/M/1排队系统的仿真。
系统输入为:泊松分布和负指数分布中的参数,服务台个数,系统输出是:平均等待时间、平均队长、服务利用率。
要求有输入、输出界面、顾客到达和离开的仿真过程表示。
这个资源可以直接运行
2025/1/25 21:21:21 34KB MMN排队 matlab 分布 仿真过程
1
深度强化学习是人工智能领域的一个新的研究热点.它以一种通用的形式将深度学习的感知能力与强化学习的决策能力相结合,并能够通过端对端的学习方式实现从原始输入到输出的直接控制.自提出以来,在许多需要感知高维度原始输入数据和决策控制的任务中,深度强化学习方法已经取得了实质性的突破.该文首先阐述了三类主要的深度强化学习方法,包括基于值函数的深度强化学习、基于策略梯度的深度强化学习和基于搜索与监督的深度强化学习;其次对深度强化学习领域的一些前沿研究方向进行了综述,包括分层深度强化学习、多任务迁移深度强化学习、多智能体深度强化学习、基于记忆与推理的深度强化学习等.最后总结了深度强化学习在若干领域的成功应用和未来发展趋势.
1
用字符文件提供数据建立连通带权网络邻接矩阵存储¬¬结构。
编写程序,用Prim算法求一棵最小生成树。
要求输出最小生成树的各条边(用顶点无序偶表示)、各条边上的权值、最小生成树所有边上的权值之和。
1
舵机是一种广泛应用于机器人、无人机和模型制作等领域的微型伺服马达,它能够根据接收到的脉冲宽度调制(PWM)信号精确地改变其旋转角度。
在本项目中,我们将探讨如何使用STM32微控制器对舵机进行控制。
STM32是意法半导体(STMicroelectronics)推出的一款基于ARMCortex-M内核的微控制器系列,以其高性能、低功耗和丰富的外设接口著称。
在基于STM32的舵机控制系统中,主要涉及到以下几个关键知识点:1.**STM32硬件接口**:STM32芯片通常具有多个PWM通道,如TIMx模块,可以产生不同频率和占空比的PWM信号。
我们需要选择一个合适的定时器通道来输出舵机所需的PWM信号。
2.**PWM生成**:STM32的定时器工作在PWM模式下,通过设置预分频器、自动重载值和比较寄存器,可以生成不同频率和占空比的PWM波形。
舵机通常需要的PWM频率在50Hz左右,占空比变化范围为1-2ms,对应舵机的角度范围通常为0°到180°。
3.**软件编程**:使用STM32CubeMX或HAL库初始化定时器和GPIO,配置PWM通道的工作模式。
之后,在主程序中,根据需要改变比较寄存器的值来调整PWM的占空比,从而控制舵机的角度。
4.**舵机驱动**:理解舵机的工作原理,知道如何通过改变PWM信号的占空比来控制舵机的转动。
这涉及到电机控制理论,包括速度和位置的反馈控制。
5.**中断服务函数**:在某些应用中,可能需要实时响应舵机的位置变化,这时可以设置定时器中断,当PWM周期到达时触发中断,更新舵机角度或者处理其他任务。
6.**调试与测试**:使用开发板上的串口或其他通信接口,将舵机的控制信号实时发送到STM32,通过示波器或逻辑分析仪检查PWM信号是否符合预期,同时观察舵机的实际动作是否正确。
7.**电源管理**:考虑到舵机的功率需求,确保STM32和舵机的供电稳定,避免电源波动影响控制精度。
8.**安全机制**:为了防止舵机过度旋转造成损坏,可以设置角度限制或超时保护,当舵机超出预定范围时停止发送PWM信号。
通过以上这些步骤,你可以实现一个基于STM32的简单舵机控制系统。
实际应用中,可能还需要结合传感器数据、算法控制等高级功能,以实现更复杂的运动控制。
对于初学者,理解并掌握这些基本概念和实践技巧,是进入STM32和舵机控制领域的重要一步。
2025/1/25 3:05:29 4.96MB stm32 舵机
1
本问主要以预测秦皇岛煤炭价格为目标,通过问题一中不同因素对其影响权重的大小以及神经网络算法,建立价格预测模型。
BP神经网络模型处理信息的基本原理是:输入信号,通过中间节点(隐层点)作用于输出节点,经过非线性变换,产生输出信号,网络训练的每个样本包括输入向量和期望输出量t,网络输出值y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的连接强度值和隐层节点与输出节点之间的连接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。
此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
1
10积分下载的,5积分回回本,stm32+MPU6050+GPS+SD卡读写+ad采集+串口输出
2025/1/24 14:48:01 4.83MB stm32 MPU6050 GPS SD卡读写
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡