利用锁相环进行四倍频,然后取倍频信号与原型号相异或,即可得到与原信号相差90度相位的信号。
本图提供了具体芯片和,电容电阻值。
本图绝对原创,经本人及同行的实践使用证明,原电路正确无误,适合为锁相放大器提供两路正交信号。
2023/9/18 6:07:25 18KB 锁相环 CD4046 90度移相 四倍频
1
这是软件工程实践者之路中文第六版的整合版只有两个部分方便下载
2023/9/17 16:19:19 49.19MB 软件工程
1
基于STM32F103ZET6的两路DAC模块输出两路相位相差120度的正弦波,方波,三角波以及梯形波,还有不对称的正弦波,叠加了高次谐波的正弦波等,利用按键切换,
2023/9/16 18:42:04 3.59MB STM32F103 正弦波 方波 三角波
1
设S=(x1,x2,…,xn)是有序集,且x1<x2<…<xn,已知键值和区间的存取概率分布为(a0,b1,a1,b2,…,bn,an),其中ai表示相应区间的搜索概率,bi表示相应键值的搜索概率。
在所有表示有序集的二叉树中找出一棵具有最小平均路长的二叉搜索树
2023/9/13 20:20:52 2KB 二分搜索树 动态规划 C语言
1
很多升压芯片及厂家等的详细资料!PT1301是一款最低启动电压可低于1V的小尺寸高效率升压DC/DC转换器,采用自适应电流模式PWM控制环路。
PT1301内部包含误差放大器、斜坡产生器、比较器、功率开关和驱动器。
PT1301能在较宽的负载电流范围内稳定和高效的工作,并且不需要任何外部补偿电路。
PT1301的启动电压可低于1V,因此可满足单节干电池的应用。
PT1301内部含有2A功率开关,在锂电池供电时最大输出电流可达300mA,同时PT1301还提供用于驱动外部功率器件(NMOS或NPN)的驱动端口,以便在应用需要更大负载电流时,扩展输出电流。
500KHz的开关频率可缩小外部元件的尺寸。
输出电压由两个外部电阻设定。
14μA的低静态电流,再加上高效率,可使电池使用更长时间。
2023/9/12 15:41:06 8.99MB 升压芯片
1
一本好书,研究dds数字频率合成必读!内容简介《直接数字频率合成》共6章,比较全面、深入地讨论了DDS的理论与应用。
主要内容包括DDS的基本概念、相位累加器、正弦查表、D/A变换器的噪声分析;
拟周期脉冲删除;
级数展开、连分式展开;
DDS相位噪声和杂散产生的机理及其降低;
DDS与PLL的组合;
分数-N频率合成器原理;
低噪声微波频率合成器的设计原理;
新的DDS结构等。
《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;
抓住问题的主要方面,把理论与应用结合在一起;
可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中的有关人员学习参考。
3目录序言第1章直接数字频率合成原理1.1DDS的基本概念1.2相位累加器1.3正弦查表1.4D/A变换器1.4.1数字编码1.4.2输出波形1.5具有调制能力的DDS系统1.6逼近频率合成第2章DDS中的相位和杂散噪声2.1引言2.2矩形波输出2.2.1拟周期脉冲删除2.2.2基于修正的恩格尔级数展开的系统2.2.3基于连分式展开的系统2.2.4基于展开组合的系统2.2.5杂散信号2.3正弦波输出2.3.1量化输出正弦波的傅里叶分析2.3.2相位截断正弦波的频谱分析2.3.3正弦字的截断2.3.4背景杂散信号电平的估计2.3.5W和S之间的关系2.4D/A变换器的噪声分析2.4.1量化引起的信噪比2.4.2D/A变换器引起的非线性杂散信号2.4.3突发性尖脉冲2.5脉冲速率频率合成器的频谱第3章DDS中相位噪声和杂散信号的降低3.1DDS的噪声特性3.1.1不同电路的噪声特性3.1.2DDS的相位噪声3.2DDS中接近载波的噪声3.2.1DDS输出噪声的计算3.2.2接近载波噪声的理论基础3.2.3杂散频谱的估计3.2.4实验结果及讨论3.3输出滤波器3.4改进DDS电路的设计3.4.1降低ROM的容量3.4.2降低突发性尖脉冲的方法3.5DDS频谱性能的改进3.6DDS与PLL的组合3.6.1DDS与PLL组合合成器3.6.2十进制DDS的设计第4章分数-N频率合成器原理4.1FNPLL环路4.1.1FNPLL环路的组成4.1.2FNPLL环路的工作原理4.2FNPLL环路简化频率合成4.3使用FNPLL环路的频率合成器4.4DDS控制吞脉冲分数-N频率合成原理4.5DDS控制吞脉冲分数-N环路的杂散相位调制4.6双模式分频器4.7多级调制分数分频器4.7.1分数分频的新方法4.7.2具有∑-△结构的分数-N频率合成中的杂散信号4.7.3分数分频器的实现第5章低噪声微波频率合成器的设计原理5.1微波环路的基本框图5.2微波环路中的加性噪声5.3用环路滤波器改善输出噪声5.4微波频率合成举例5.4.1超低噪声微波频率合成器5.4.2雷达和通信系统中的低噪声频率合成器第6章新的DDS结构6.1混合DDS6.1.1混合DDS结构6.1.2800MHz混合DDS6.2DDS后接重复分频和混频器6.2.1总的要求6.2.25100结构作为偏移合成器6.2.3混频和分频链的前后端6.3综合技术结构6.4IIR滤波方法6.4.1IIR谐振器6.4.2用TMS320C30产生正弦波6.5复位方法6.5.1无稳定性控制的IIR滤波器6.5.2有稳定性控制的IIR滤波器6.5.3有稳定性控制和小□值的IIR滤波器6.5.4DCSW方法6.5.5IIR-ALT方法6.6实现与试验结果6.6.1数值输出6.6.2模拟输出附录附录A:拉普拉斯变换附录B:z变换附录C:DDS输出的傅里叶变换附录D:正交调制器相位误差的数字相位预矫正
2023/9/12 9:37:32 14.51MB dds 数字频率合成 白居宪
1
多路数据采集,通过adc0808采集数据,并将结果通过LED显示出来
2023/9/12 3:39:23 79KB 数据采集 proteus adc0808
1
数电课程设计,八路数显报警器,源文件加报告,资源详细可靠
2023/9/12 1:20:41 820KB 数电课程设计 八路数显报警器
1
在多路访问组播中,IGMP查询器和PIMDR究竟谁负责转发组播数据流?本实验通过实例验证这个问题,要配合VLC软件一起使用
2023/9/11 7:56:18 44KB IGMP pim DR
1
全套硬件设计智能车快进来学习技术绝对合适对自己未来发展进步很有帮助的,不要在乎那点积分了!当然我也是为了那些再也百度不到东西的童鞋找一条路
2023/9/10 19:24:02 26.66MB 智能车
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡