BP算法,误差反向传播(ErrorBackPropagation,BP)算法。
BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
利用python代码实现BP神经网络。
2024/6/24 19:54:19 17KB 神经网络
1
├─1.计算机视觉简介、环境准备(python,ipython)│computervsion.pdf│CS231introduction.pdf│├─2.图像分类问题简介、kNN分类器、线性分类器、模型选择│2.图像分类简介、kNN与线性分类器、模型选择.mp4│2.初识图像分类.pdf│├─3.再谈线性分类器│3.再谈线性分类器.mp4│再谈线性分类器.pdf│├─4.反向传播算法和神经网络简介│.反向传播算法和神经网络简介.pdf│4.反向传播算法和神经网络简介.mp4│├─5.神经网络训练1│5.-神经网络训练1.pdf│5.神经网络训练1.mp4│├─6.神经网络训练2、卷积神经网络简介│6.神经网络训练2.mp4│神经网络训练2.pdf│├─7.卷积神经网络│7.卷积神经网络.mp4│Lession7.pdf│├─8.图像OCR技术的回顾、进展及应用前景│8.图像OCR技术的回顾、进展及应用前景.mp4│PhotoOCR_xbai.pdf│└─9.物体定位检测物体定位检测.pdf│├─10.卷积神经网络可视化│.卷积神经网络可视化.pdf│10.卷积神经网络可视化.mp4│├─11.循环神经网络及其应用│11.循环神经网络及其应用.mp4│循环神经网络.pdf│├─12.卷积神经网络实战│12.卷积神经网络训练实战.mp4│卷积神经网络实战.pdf│├─13.常见深度学习框架介绍│常见深度学习框架介绍.pdf│├─14.图像切割│14.图像切割.mp4
1
本程序经过测试,可以在安装有微信的机器上运行,可以微信控制训练的开始,停止,及微信修改参数再训练,可以将自己想要的结果,实时的发送到自己(或指定)的微信上,使用过程有什么问题可以私信交流wfc117@163.com
2024/6/23 17:27:51 22.16MB 微信 监控 神经网络
1
一个不错的微机训练题(含答案)~~~~~~~~~~~~
2024/6/22 17:38:12 44KB 微机原理
1
tensorflowpythoncpuwindow自己输入样本训练神经网络,测试,实现猫和狗两类动物的分类!!可用于学习!!样本资源少以及网络简单存在过拟合问题.
2024/6/22 15:23:11 142.71MB classificati tensorflow deeplearning
1
Ubuntu16.04下YOLO-V3的配置方法,里面添加了一些配置成功的网址,实测有效
5KB YOLOV3
1
对Iris数据进行两个特征选取,共6种组合,计算类别可分性准则函数J值,得出最好的分类组合,画出各种组合的分布图;
2、使用前期作业里面的程序、对6种组合分别使用不同方法进行基于120个训练样本30个测试样本的学习误差和测试计算,方法包括:最小距离法(均值为代表点)、最近邻法、k近邻法(k取3、5...)等;
2024/6/20 13:07:29 2KB 最小距离法
1
相信社区中很多小伙伴和我一样使用了很长时间的Caffe深度学习框架,也非常希望从代码层次理解Caffe的实现从而实现新功能的定制。
本文将从整体架构和底层实现的视角,对Caffe源码进行解析。
Caffe框架主要有五个组件,Blob,Solver,Net,Layer,Proto,其结构图如下图1所示。
Solver负责深度网络的训练,每个Solver中包含一个训练网络对象和一个测试网络对象。
每个网络则由若干个Layer构成。
每个Layer的输入和输出Featuremap表示为InputBlob和OutputBlob。
Blob是Caffe实际存储数据的结构,是一个不定维的矩阵,在Caffe中一般用来表
2024/6/20 7:41:40 658KB 深度学习框架Caffe源码解析
1
工程中包含训练好的模型,内部有详细的配置教程,方法简单效果明显,程序运行流畅。
2024/6/19 21:17:22 67.83MB opencv dlib VS2015
1
训练集采用TE过程正常状态参数,测试集采用TE过程故障10状态参数,采用ICA方法对TE过程进行故障检测与诊断
2024/6/18 0:01:11 361KB ICA;TE
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡