matlab画出高斯脉冲和其功率谱
2018/2/9 8:17:23 907B matlab 高斯
1
为了获得高反复频率的飞秒激光脉冲,将突发运行模式引入飞秒碟片再生放大系统中。
通过将再生放大器的腔长设计为9.3m,激光系统输出了接近衍射极限的激光脉冲,且激光脉冲的反复频率为电光调制频率的5倍。
在电光调制频率为5kHz、吸收的抽运功率为98W的条件下,获得了最高输出功率为10.7W、光谱半峰全宽为1.18nm、脉冲宽度为777fs的双曲正割脉冲输出。
再生放大器的光-光转换效率随着电光调制频率的增加而增加,从频率为0.5kHz时的12.4%增加到频率为5kHz时的25.3%。
激光的输出稳定性在18~20℃的温度区间内随着水冷温度的降低而提高,激光系统输出功率的均方根从20℃时
1
为了获得高反复频率的飞秒激光脉冲,将突发运行模式引入飞秒碟片再生放大系统中。
通过将再生放大器的腔长设计为9.3m,激光系统输出了接近衍射极限的激光脉冲,且激光脉冲的反复频率为电光调制频率的5倍。
在电光调制频率为5kHz、吸收的抽运功率为98W的条件下,获得了最高输出功率为10.7W、光谱半峰全宽为1.18nm、脉冲宽度为777fs的双曲正割脉冲输出。
再生放大器的光-光转换效率随着电光调制频率的增加而增加,从频率为0.5kHz时的12.4%增加到频率为5kHz时的25.3%。
激光的输出稳定性在18~20℃的温度区间内随着水冷温度的降低而提高,激光系统输出功率的均方根从20℃时
1
报道了一台全固态、高亮度、亚纳秒级的1.319μm连续自动锁模激光器。
谐振腔采用四镜折叠热稳腔,以二极管抽运的两个NdYAG模块作为增益模块,并利用自动幅度调制的声光锁模器进行锁模。
锁模运转后激光器稳定输出平均功率为9.6W,光束质量因子M2<2。
锁模激光脉冲重复频率为100MHz,脉宽约630ps。
2015/3/7 6:19:45 2.36MB 激光器 全固态 主动锁模 二极管抽
1
可以控制步进电机的加减速,stm32f407下载即可使用,1.实现的功能:按键KEY0控制两个电机的使能,按键WK_UP控制电机的正反转,按键KEY1控制电机的加速,按键KEY2控制电机的减速。
初始脉冲为5Hz,每加速一次,即按键按下一次添加1Hz,减速也是减小1Hz。
2017/5/7 17:02:51 4.74MB stm32
1
基于51单片机的脉冲旌旗灯号计数并报警源代码,从P2^0与gnd之间取旌旗灯号,报警P3^4
2015/7/25 7:38:02 297B 脉冲信号计数
1
数据包里有原始数据,打开就可以看到效果。
先用采集卡采集信号,得到信号后做EMD去趋向处理,去直流处理,然后时域分析波形(脉冲宽度等),频域分析(峰值频率,低频,中心频率等);
2017/9/22 20:41:11 859KB EMD MATLAB 超声检测 无损检测
1
eda中课件关于可控脉冲发生器的计划
2015/3/13 1:23:58 3.28MB EDA
1
递推平均滤波法A、方法:   把连续取N个采样值看成一个队列   队列的长度固定为N   每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)   把队列中的N个数据进行算术平均运算,就可获得新的滤波结果      N值的选取:流量,N=12;
压力:N=4;
液面,N=4~12;
温度,N=1~4B、优点:   对周期性干扰有良好的抑制造用,平滑度高   适用于高频振荡的系统C、缺点:   灵敏度低   对偶然出现的脉冲性干扰的抑制造用较差   不易消除由于脉冲干扰所引起的采样值偏差   不适用于脉冲干扰比较严重的场合   比较浪费RAM
2016/9/5 4:41:20 416KB PLC程序
1
利用太赫兹时域光谱系统(THz-TDS)对Sierpinski分形结构太赫兹透射特性进行了研究,结果表明:太赫兹脉冲通过Sierpinski分形结构会产生多个透射通带与禁带,透射通带与禁带的位置对样品结构存在一定的尺度依赖性。
随着结构阵列的增加,透射峰与禁带都有加强的趋势。
通过对缺级样品的分析,进而得出:透射峰与禁带的产生次要是由于方孔对太赫兹波的耦合作用,且不同的透射峰与禁带是由不同阶孔对太赫兹波的耦合作用产生的:低频区的透射峰与禁带次要是由低级分形方孔对太赫兹波的耦合引起的,高频区的透射峰与禁带次要是由高级分形方孔对太赫兹波的耦合作用引起的。
2020/10/12 16:40:58 1.88MB 光谱学 太赫兹 透射增强 时间分辨
1
共 547 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡