VS2010环境下运行。
包含多种计算机图像学的基本算法:DDA画线,Bresenhen算法,画圆,画多边形,Cohen-Sutherland裁剪算法,Liang-Barsky裁剪算法,扫描线填充算法,三次样条曲线,Bezier曲线,三次B样条曲线,二维图形变换(平移,缩放,旋转),Z-buffer消隐。
欢迎下载^^
2023/12/23 11:03:07 39.94MB MFC C++ 裁剪 填充
1
多点插值的埃米尔特曲线、贝齐尔曲线及B样条曲线绘制。
通过鼠标输入型值点,根据用户输入的型值点,分别绘制Hermite曲线,三次Bezier曲线,四阶三次等距B样条曲线(可通过菜单或工具条选择具体要绘制哪种曲线),要求同时绘制出曲线的控制多边形(对Hermite曲线,要求绘制出起点和终点处切向量)
2023/12/22 16:58:58 1.88MB 图形学 Bezier曲线 Hermite曲线 B样条曲线
1
各画出了两条性能曲线,一条是根据理论平均错概率画出,另一条是仿真曲线各画出了两条性能曲线,一条是根据理论平均错概率画出,另一条是仿真曲线
2023/12/22 16:11:05 1KB matlab BPSK QPSK
1
遥感影像场景变化检测经典算法(IR-MAD、MAD、CVA、PCA)算法集锦,包含其算法Code和Demo,另外,含有算法的评价函数OA、Kappa、AUC、ROC曲线,分享学习,批评指教。
2023/12/22 15:05:57 7.97MB 变化检测 IR-MAD MAD CVA
1
切水果源码,曲线水果刀,分数统计,炸弹发射,掉落统计,随即发射水果等功能实现
2023/12/21 12:25:25 9.66MB 切水果
1
设计要求:IIR高通、带通和带阻数字滤波器设计巴特沃思数字高通滤波器设计:抽样频率为10kHZ,,通带截止频率为2.5kHZ,通带衰减不大于2dB,阻带上限截止频率1.5kHZ,阻带衰减不小于15dB巴特沃思数字带通滤波器设计:抽样频率为10kHZ,,通带范围是1.5kHZ到2.5kHZ,通带衰减不大于3dB,在1kHZ和4kHZ处衰减不小于20dB巴特沃思数字带阻滤波器设计:抽样频率为10kHZ,,在-2dB衰减处的边带频率是1.5kHZ,4kHZ,在-13dB衰减处频率是2kHZ和3kHZ分别绘制这三种数字滤波器的幅度响应曲线和相位响应曲线;
采用切比雪夫Ⅰ型滤波器为原型重新设计上述三种数字滤波器;
分别绘制这三种数字滤波器的幅度响应曲线和相位响应曲线;
对两种滤波器原型的设计结果进行比较
2023/12/21 8:11:11 408KB
1
自己做的演示用的PPT,介绍NS2入门知识,NS2的结构和实现机制,最后对MTE,LEACH和LEACH-C用NS2模拟,得出仿真结果,分析曲线
2023/12/20 13:51:36 1.02MB NS2 网络模拟 协议 仿真
1
当干扰信号出现时,卫星信号的等效载噪比(EquivalentC/N0,[C/N0]eq)将会降低,该程序描述了[C/N0]eq与无干扰时C/N0之间的关系曲线。
1
专业的虚拟数字币交易所系统开发商,系统基于虚拟数字币、公司币、山寨币、电子币、挖矿币和积分币的发行,管理,交易等全套服务设计的管理系统。
系统经过我们一年的研发,五年的各版本打磨,现已是专业的股票级交易系统,客户遍布海内外。
数字币交易所系统是基于Web版本的B/S交易平台,系统采用自主研发框架,被广泛应用在数字货币和公司股权的交易中,系统根据各客户的需求和行业特点已发展一套完整的功能。
系统支持多种语言间快速切换、支持多种货币买卖数字货币、完整的曲线图表行情中心、专业股票级的交易大厅和资金出入金管理,更多功能等待您的发现。
完整解决方案虚拟数字货币交易系统:提供完整的虚拟数字币交易系统软件数字货币移动支付APP:提供专业的数字币移动支付APP,轻松支付一扫搞定公司币交易系统:提供完整的公司币交易所系统软件企业股权交易系统:提供完整的企业股权交易所系统软件
1
前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡