通过二次曲面拟合的方式建立模型,实现大地高,正常高,高程异常值之间的互相转换,实现拟合模型成功建立。
2016/5/10 21:13:34 2KB matlab 二次曲面拟合
1
最近学习RANSAC算法,本人做的一个实验。
如果数据集包含有误差点,用最小二乘法拟合的模型会有问题,应该先剔除误差点,然后求模型。
用的二维点,MATLAB实现,仅供参考。
2018/10/25 23:48:17 32KB ransac 实验
1
压电陶瓷因其具有迟滞特性,如不经处理,会对其使用产生影响。
针对当期望输出与频率无关时的压电陶瓷的迟滞非线性问题,提出了一种基于极坐标的数学建模方法,同时给出了通用的PI迟滞模型,并对两种模型进行了比较。
仿真结果表明仿真曲线较平滑,克服了PI迟滞算子拟合出现的毛刺问题。
根据实验结果分析了极坐标的迟滞曲线和PI迟滞曲线的拟合误差,并进一步给出了拟合方差。
在该迟滞模型的基础上,引入前馈PID控制方法进行实验,给出跟踪平均绝对误差及方差,并与经典PI控制在跟踪精确度等方面进行了比较。
实验结果证明了该控制方法的可行性和精确性
2018/10/20 13:09:19 741KB 压电陶瓷 驱动 模型
1
说明,这个matlab程序的目标是对BP神经网络中的神经元连接权和阈值构成的高维参数空间进行最优求解,试图用PSO算法求解神经网络中的参数,而不是用传统的误差反传算法。
但由于经典粒子群算法存在局部最优的问题。
该算法也存在同样的问题。
该算法在迭代数较大时可以基本做到误差较大的函数拟合。
但是通过该资源提供的图解和代码正文,用户可以很容易的学习到PSO算法的过程。
至于如何突破局部最优,这个就有待各位PSO爱好者进行优化了。
2019/10/16 13:18:03 582KB 粒子群 PSO BP 曲线拟合
1
深度强化学习是深度学习算法和强化学习算法的巧妙结合,它是一种新兴的通用人工智能算法技术,也是机器学习的前沿技术,DRL算法潜力无限,AlphaGo是目前该算法最成功的使用案例。
DRL算法以马尔科夫决策过程为基础,是在深度学习强大的非线性函数的拟合能力下构成的一种增强算法。
深度强化学习算法主要包括基于动态规划(DP)的算法以及基于策略优化的算法,这本书共10章,首先以AlphaGo在围棋大战的伟大事迹开始,引起对人工智能发展和现状的引见,进而引见深度强化学习的基本知识。
然后分别引见了强化学习(重点引见蒙特卡洛算法和时序差分算法)和深度学习的基础知识、功能神经网络层、卷积神经网络(CNN)、循环神经网络(RNN),以及深度强化学习的理论基础和当前主流的算法框架。
最后引见了深度强化学习在不同领域的几个应用实例。
2019/3/8 21:17:23 145.91MB 深度强化学习
1
本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。
最后提出了有关人口控制与管理的措施。
模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。
得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。
运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。
模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;
然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的Leslie模型。
首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;
预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。
其次,对人口老龄化问题、人口抚养比进行分析。
得到我国老龄化在加速,预计本世纪40年代中后期构成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;
65岁以上老年人口达3.51亿人,比重达25.53%;
人口抚养呈现增加的趋势。
再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。
最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。
1
根据外部测量设备,测量的地位数据转换成离散坐标,通过最小二乘法拟合出圆的方程。
并计算圆心坐标+圆半径。
2019/10/17 8:51:18 6.55MB 最小二乘法 C#
1
本文首先引见了最小二乘原理。
其次引见了用Matlab实现曲线拟合以得到函数关系的方法和步骤。
最后举例比较了采用不同方法进行拟合得到的结果。
2021/11/13 15:52:25 200KB 最小二乘法 曲线拟合 matlab实现
1
空间离散点椭球拟合源代码,采用MFC开发,外面包含真实工程测量数据,界面也很美观
2021/1/20 17:28:13 510KB 空间离散点 椭球拟合 MFC EllipsoidFit
1
《MATLAB神经网络43个案例分析》是在《MATLAB神经网络30个案例分析》的基础上出版的,部分章节涉及了常见的优化算法(遗传算法、粒子群算法等)与神经网络的结合问题。
《MATLAB神经网络43个案例分析》可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。
《MATLAB神经网络43个案例分析》共有43章目录如下:第1章BP神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN网络的预测----基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类预测——意大利葡萄酒种类识别第15章SVM的参数优化——如何更好的提升分类器的功能第16章基于SVM的回归预测分析——上证指数开盘指数预测.第17章基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第18章基于SVM的图像分割-真彩色图像分割第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用第21章自组织竞争网络在模式分类中的应用—患者癌症发病预测第22章SOM神经网络的数据分类--柴油机故障诊断第23章Elman神经网络的数据预测----电力负荷预测模型研究第24章概率神经网络的分类预测--基于PNN的变压器故障诊断第25章基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选第26章LVQ神经网络的分类——乳腺肿瘤诊断第27章LVQ神经网络的预测——人脸朝向识别第28章决策树分类器的应用研究——乳腺癌诊断第29章极限学习机在回归拟合及分类问题中的应用研究——对比实验第30章基于随机森林思想的组合分类器设计——乳腺癌诊断第31章思维进化算法优化BP神经网络——非线性函数拟合第32章小波神经网络的时间序列预测——短时交通流量预测第33章模糊神经网络的预测算法——嘉陵江水质评价第34章广义神经网络的聚类算法——网络入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化计算——建模自变量降维第37章基于灰色神经网络的预测算法研究——订单需求预测第38章基于Kohonen网络的聚类算法——网络入侵聚类第39章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类第40章动态神经网络时间序列预测研究——基于MATLAB的NARX实现第41章定制神经网络的实现——神经网络的个性化建模与仿真第42章并行运算与神经网络——基于CPU/GPU的并行神经网络运算第43章神经网络高效编程技巧——基于MATLABR2012b新版本特性的探讨
2018/5/7 15:26:16 11.77MB 神经网络 遗传算法 粒子群算法等
1
共 462 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡