本书从原理到实践全面系统地阐述了IBMWebSphereMQ产品的安装、配置、管理、设计、编程等各个方面,同时也介绍了产品的扩展功能和一些高级使用技巧。
本书从功能上重点介绍了日志管理、死信处理、客户端、群集、交易、触发、报告、事件、分段与分组、分发列表、发布订阅、数据转换、用户出口、安全套接字、功能等
2020/7/18 4:38:50 2.38MB 精通 WebSphere MQ 中文完整版
1
第一部分简介  第1章简介2  1.1概述2  1.2进程、线程与信息共享3  1.3IPC对象的持续性4  1.4名字空间5  1.5fork、exec和exit对IPC对象的影响7  1.6出错处理:包裹函数8  1.7Unix标准9  1.8书中IPC例子索引表11  1.9小结13  习题13  第2章PosixIPC14  2.1概述14  2.2IPC名字14  2.3创建与打开IPC通道16  2.4IPC权限18  2.5小结19  习题19  第3章SystemVIPC20  .3.1概述20  3.2key_t键和ftok函数20  3.3ipc_perm结构22  3.4创建与打开IPC通道22  3.5IPC权限24  3.6标识符重用25  3.7ipcs和ipcrm程序27  3.8内核限制27  3.9小结28  习题29  第二部分消息传递  第4章管道和FIFO32  4.1概述32  4.2一个简单的客户-服务器例子32  4.3管道32  4.4全双工管道37  4.5popen和pclose函数39  4.6FIFO40  4.7管道和FIFO的额外属性44  4.8单个服务器,多个客户46  4.9对比迭代服务器与并发服务器50  4.10字节流与消息51  4.11管道和FIFO限制55  4.12小结56  习题57  第5章Posix消息队列58  5.1概述58  5.2mq_open、mq_close和mq_unlink函数59  5.3mq_getattr和mq_setattr函数61  5.4mq_send和mq_receive函数64  5.5消息队列限制67  5.6mq_notify函数68  5.7Posix实时信号78  5.8使用内存映射I/O实现Posix消息队列85  5.9小结101  习题101  第6章SystemV消息队列103  6.1概述103  6.2msgget函数104  6.3msgsnd函数104  6.4msgrcv函数105  6.5msgctl函数106  6.6简单的程序107  6.7客户-服务器例子112  6.8复用消息113  6.9消息队列上使用select和poll121  6.10消息队列限制122  6.11小结124  习题124  第三部分同步  第7章互斥锁和条件变量126  7.1概述126  7.2互斥锁:上锁与解锁126  7.3生产者-消费者问题127  7.4对比上锁与等待131  7.5条件变量:等待与信号发送132  7.6条件变量:定时等待和广播136  7.7互斥锁和条件变量的属性136  7.8小结139  习题139  第8章读写锁140  8.1概述140  8.2获取与释放读写锁140  8.3读写锁属性141  8.4使用互斥锁和条件变量实现读写锁142  8.5线程取消148  8.6小结153  习题153  第9章记录上锁154  9.1概述154  9.2对比记录上锁与文件上锁157  9.3Posixfcntl记录上锁158  9.4劝告性上锁162  9.5强制性上锁164  9.6读出者和写入者的优先级166  9.7启动一个守护进程的独一副本170  9.8文件作锁用171  9.9NFS上锁173  9.10小结173  习题174  第10章Posix信号量175  10.1概述175  10.2sem_open、sem_close和sem_  unlink函数179  10.3sem_wait和sem_trywait函数180  10.4sem_post和sem_getvalue函数180  10.5简单的程序181  10.6生产者-消费者问题186  10.7文件上锁190  10.8sem_init和sem_destroy函数191  10.9多个生产者,单个消费者193  10.10多个生产者,多个消费者19
2017/1/14 5:24:31 42.17MB 操作系统
1
com.ibm.mq依赖包,java连接ibmmq所需求的依赖包
2021/11/1 20:20:37 2.39MB websphereMQ ibm mq
1
唐朔飞计算机组成原理1-10章答案第一章计算机系统概论1.什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3 计算机系统:由计算机硬件系统和软件系统组成的综合体。
计算机硬件:指计算机中的电子线路和物理装置。
计算机软件:计算机运行所需的程序及相关资料。
硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。
5.冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;
指令和数据以同同等地位存放于存储器内,并可以按地址访问;
指令和数据均用二进制表示;
指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;
指令在存储器中顺序存放,通常自动顺序取出执行;
机器以运算器为中心(原始冯•诺依曼机)。
7.解释下列概念:主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、存储容量、机器字长、指令字长。
解:P9-10  主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。
 CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;
(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。
 主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;
由存储体、各种逻辑部件及控制电路组成。
 存储单元:可存放一个机器字并具有特定存储地址的存储单位。
 存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。
 存储字:一个存储单元所存二进制代码的逻辑单位。
 存储字长:一个存储单元所存二进制代码的位数。
 存储容量:存储器中可存二进制代码的总量;
(通常主、辅存容量分开描述)。
 机器字长:指CPU一次能处理的二进制数据的位数,通常与CPU的寄存器位数有关。
 指令字长:一条指令的二进制代码位数。
8.解释下列英文缩写的中文含义:CPU、PC、IR、CU、ALU、ACC、MQ、X、MAR、MDR、I/O、MIPS、CPI、FLOPS解:全面的回答应分英文全称、中文名、功能三部分。
CPU:CentralProcessingUnit,中央处理机(器),是计算机硬件的核心部件,主要由运算器和控制器组成。
PC:ProgramCounter,程序计数器,其功能是存放当前欲执行指令的地址,并可自动计数构成下一条指令地址。
IR:InstructionRegister,指令寄存器,其功能是存放当前正在执行的指令。
CU:ControlUnit,控制单元(部件),为控制器的核心部件,其功能是产生微操作命令序列。
ALU:ArithmeticLogicUnit,算术逻辑运算单元,为运算器的核心部件,其功能是进行算术、逻辑运算。
ACC:Accumulator,累加器,是运算器中既能存放运算前的操作数,又能存放运算结果的寄存器。
MQ:Multiplier-QuotientRegister,乘商寄存器,乘法运算时存放乘数、除法时存放商的寄存器。
X:此字母没有专指的缩写含义,可以用作任一部件名,在此表示操作数寄存器,即运算器中工作寄存器之一,用来存放操作数;
MAR:MemoryAddressRegister,存储器地址寄存器,在主存中用来存放欲访问的存储单元的地址。
MDR:MemoryDataRegister,存储器数据缓冲寄存器,在主存中用来存放从某单元读出、或要写入某存储单元的数据。
I/O:Input/Outputequipment,输入/输出设备,为输入设备和输出设备的总称,用于计算机内部和外界信息的转换与传送。
MIPS:MillionInstructionPerSecond,每秒执行百万条指令数,为计算机运算速度指标的一种计量单位。
9.画出主机框图,分别以存数指令“STAM”和加法指令“ADDM”(M均为主存地址)为例,在图中按序标出完成该指令(包括取指令阶段)的信息流程(如→①)。
假设主存容量为256M*32位,在指令字长、存储字长、机器字长相等的条件下,指出图中各寄存器的位数。
解:主机框图如P13图1.11所示。
(1)STAM指令:PC→MAR,MAR→MM,MM→MDR,MDR→IR, OP(IR)→CU,Ad(IR)→MAR,ACC→MDR,MAR→MM,WR (2)ADDM指令:PC→MAR,MAR→MM,MM→MDR,MDR→IR, OP(IR)
1
IBMMQ7.0全部协助文档。
可以通过参考其中完成针对MQ的开发工作。
2022/9/4 2:29:14 22.6MB MQ
1
JUC多线程及并发、JVM+GC解析、GitHub骚操作、消息两头件MQ、NOSQL数据库Redis
2022/9/3 3:57:33 365KB 面试
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡