自己根据bp算法编写的代码没有用bp函数及工具箱
2024/8/17 2:37:47 1KB MATLAB
1
该文章主要描述了如何利用S函数对BP网络进行处理的问题。
2024/8/13 4:12:29 350KB BP 神经网络
1
利用BP神经网络算法进行的图像文字识别.能够成功识别英文字母,数字
2024/8/11 10:45:50 4KB 图像识别
1
基于BP神经网络的滚动轴承故障诊断,内附故障数据
2024/8/11 5:58:04 3KB MATLAB BP网络
1
实现对车辆图片中的车牌号码自动定位,分割,识别。
识别率搞到98%。
2024/7/31 20:40:07 2.15MB 车牌识别 BP神经网络 汉字识别
1
公路运量主要包括公路客运量和公路货运量两方面。
某个地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,已知该地区20年(1990-2009)的公路运量相关数据如下:样本数据较多,且已知影响数据的因素(三大因素:该地区的人数、机动车数量和公路面积),可考虑将其作为BP神经网络的训练集,对该神经网络进行训练,然后对训练好的神经网络进行测试,最后使用测试合格的神经网络进行预测工作。
2024/7/19 14:23:47 6KB bp神经网络
1
PID电机控制目录第1章数字PID控制1.1PID控制原理1.2连续系统的模拟PID仿真1.3数字PID控制1.3.1位置式PID控制算法1.3.2连续系统的数字PID控制仿真1.3.3离散系统的数字PID控制仿真1.3.4增量式PID控制算法及仿真1.3.5积分分离PID控制算法及仿真1.3.6抗积分饱和PID控制算法及仿真1.3.7梯形积分PID控制算法1.3.8变速积分PID算法及仿真1.3.9带滤波器的PID控制仿真1.3.10不完全微分PID控制算法及仿真1.3.11微分先行PID控制算法及仿真1.3.12带死区的PID控制算法及仿真1.3.13基于前馈补偿的PID控制算法及仿真1.3.14步进式PID控制算法及仿真第2章常用的PID控制系统2.1单回路PID控制系统2.2串级PID控制2.2.1串级PID控制原理2.2.2仿真程序及分析2.3纯滞后系统的大林控制算法2.3.1大林控制算法原理2.3.2仿真程序及分析2.4纯滞后系统的Smith控制算法2.4.1连续Smith预估控制2.4.2仿真程序及分析2.4.3数字Smith预估控制2.4.4仿真程序及分析第3章专家PID控制和模糊PID控制3.1专家PID控制3.1.1专家PID控制原理3.1.2仿真程序及分析3.2模糊自适应整定PID控制3.2.1模糊自适应整定PID控制原理3.2.2仿真程序及分析3.3模糊免疫PID控制算法3.3.1模糊免疫PID控制算法原理3.3.2仿真程序及分析第4章神经PID控制4.1基于单神经元网络的PID智能控制4.1.1几种典型的学习规则4.1.2单神经元自适应PID控制4.1.3改进的单神经元自适应PID控制4.1.4仿真程序及分析4.1.5基于二次型性能指标学习算法的单神经元自适应PID控制4.1.6仿真程序及分析4.2基于BP神经网络整定的PID控制4.2.1基于BP神经网络的PID整定原理4.2.2仿真程序及分析4.3基于RBF神经网络整定的PID控制4.3.1RBF神经网络模型4.3.2RBF网络PID整定原理4.3.3仿真程序及分析4.4基于RBF神经网络辨识的单神经元PID模型参考自适应控制4.4.1神经网络模型参考自适应控制原理4.4.2仿真程序及分析4.5基于CMAC(神经网络)与PID的并行控制4.5.1CMAC概述4.5.2CMAC与PID复合控制算法4.5.3仿真程序及分析4.6CMAC与PID并行控制的Simulink仿真4.6.1Simulink仿真方法4.6.2仿真程序及分析第5章基于遗传算法整定的PID控制5.1遗传算法的基本原理5.2遗传算法的优化设计5.2.1遗传算法的构成要素5.2.2遗传算法的应用步骤5.3遗传算法求函数极大值5.3.1遗传算法求函数极大值实例5.3.2仿真程序5.4基于遗传算法的PID整定5.4.1基于遗传算法的PID整定原理5.4.2基于实数编码遗传算法的PID整定5.4.3仿真程序5.4.4基于二进制编码遗传算法的PID整定5.4.5仿真程序5.5基于遗传算法摩擦模型参数辨识的PID控制5.5.1仿真实例5.5.2仿真程序第6章先进PID多变量解耦控制6.1PID多变量解耦控制6.1.1PID解耦控制原理6.1.2仿真程序及分析6.2单神经元PID解耦控制6.2.1单神经元PID解耦控制原理6.2.2仿真程序及分析6.3基于DRNN神经网络整定的PID解耦控制6.3.1基于DRNN神经网络参数自学习PID解耦控制原理6.3.2DRNN神经网络的Jacobian信息辨识6.3.3仿真程序及分析第7章几种先进PID控制方法7.1基于干扰观测器的PID控制7.1.1干扰观测器设计原理7.1.2连续系统的控制仿真7.1.3离散系统的控制仿真7.2非线性系统的PID鲁棒控制7.2.1基于NCD优化的非线性优化PID控制7.2.2基于NCD与优化函数结合的非线性优化PID控制7.3一类非线性PID控制器设计7.3.1非线性控制器设计原理7.3.2仿真程序及分析7.4基于重复控制补偿的高精
2024/7/16 13:07:56 5.56MB PID
1
我们用了两种算法对PJM某区电力负荷进行超短期预测。
ARIMA算法预测速度较快,平均误差在3%以内,特别适合这种超短期负荷预测,而小波分析+BP神经网络算法是一种适应性比较广的算法,在此次超短期负荷预测中它的平均误差在7%以内,预测时间相对更长。
此程序由华北电力大学电力专业学生编写,采用了VB、MATLAB混合编程(VB的界面,MATLAB的内核),利用了2种算法实现电力负荷超短期预测,这2种方法都是当前较先进实用的算法,十分有启发性。
2024/7/16 11:31:37 8.95MB ARIMA 小波分析 BP神经网络 短期预测
1
光伏阵列能否正常工作直接关系到整个光伏发电系统运行的安全性和可靠性。
对于光伏阵列故障诊断中传统的BP神经网络诊断算法准确率低、收敛速度慢等问题,提出一种基于粒子群优化RBF神经网络的故障诊断算法。
建立以光伏阵列的4种故障特征参数为输入、5种情况为输出的故障诊断模型,对基于粒子群算法的网络模型的自适应权重寻优进行仿真实验。
最后,将优化算法与BP神经网络算法以及RBF神经网络算法进行对比。
实验结果表明,优化算法不仅可以有效地诊断光伏阵列的故障类型,而且还可以提高故障诊断的准确率。
2024/7/16 10:56:42 958KB 行业研究
1
用matlab变形的BP神经网络实例,代码简单易懂,不用积分。
方便下载。
我花了几天时间写的,注释详细。
2024/7/5 9:48:25 158KB BP 神经网络 matlab实例 简单
1
共 313 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡