本附录以费格方式给出了IEEE-14.30.57.118节点标准测试系统的原始数据和潮流结果,以及供事考用的发电机经前妻数、芷电机出力限值c其中.IEEE-30节点草统还给出了芷电费用最小优化潮流的计算结果。
所有功率数据都是以100MVA为功率基值的标主值,电压相角单位是度,电压幅值是标在值。
节点电压上下限值为1.10和0.95。
潮班计算中所有发电机节点均被视为电压控制节点(PV节点儿打"善"号节点为松弛节点(平衡节点)0'.{比正号时表示非标准变比在首端,负号时表示非标准变比在末端。
并联电事电纳是正号而电抗电纳是负号。
本附最还给出了IEEE-14.30.1l8节点测试系统接线图(见图A1.图A2租图A3)。
2017/8/6 17:55:48 348KB 节点图
1
C8T6--FLASH模仿EEPROM,里面3个按键PA0、PA1、PA2,不用接,用排针短接地测试就可,用USB转TTL接串口1,其中A0和A1是写,PA2是读,通过串口调试助手看数据即可。
2019/11/7 9:24:35 2.46MB FLASH模拟EEPROM C8T6 例程
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2019/5/1 5:12:10 973B 数字全息
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2017/1/5 5:10:15 973B 数字全息
1
蒙泰彩色电子出版系统分为证卡版、标准版和报版等几个版本,各版均可在Windows98/Me/2000/NT/XP下运行:证卡普通版最大幅面A4,支持镜像、分色、输出成PS文件,无图片输出功能。
证卡数据库版最大幅面A4,在证卡普通版的基础上加入套数据库功能。
标准版最大输出幅面为A1、输出精度不限,支持各类照排机。
报版最大输出幅面为A0,支持各类照排机,可满足各类专业印刷的要求。
专业版输出幅面无限制,支持各类大幅面打印机。
蒙泰专注于数码印刷、数码打印的软硬件系统研发十多年,产品涉及排版印刷、报纸出版、版纹防伪、可变数据打印、数据库表单处理、打印机监控管理。
蒙泰产品广泛应用于广告画面生产、印刷出版、企业集中打印、机关办公文印、证件票据、邮政商函等领域,特别是在广告喷绘、色彩管理行业尤为突出,不断保持最高占用率和优秀的服务。
2018/7/23 2:26:41 842KB 蒙泰5.2 750驱动
1
//给定一个正整数N,其中//N=A1+A2+...+An其中A1,A2,...,An为斐波那契数列不重复的正整数(不会有2个1这种结果)//请实现下面的function(function格式请勿修改)//其中输入参数为N,前往值为A1,A2,...,An.的递减数组//若找不到结果则前往空数组//斐波那契数列定义如下://F1=1//F2=1//Fn=Fn-1+Fn-2//->斐波那契数列的值为:1,1,2,3,5,8,13,21,34,....//Exinput11->output[8,3]//Exinput31->output[21,8,2]
2017/4/25 13:52:36 2KB 斐波那契数列 正整数分解 算法
1
AnalogtoDigital库将模仿引脚A0-A3转换为数字引脚,不包括I2C引脚A4和A5引脚A0=14引脚A1=15引脚A2=16引脚A3=17引脚A4=18->I2CSDA引脚A5=19->I2CSCLConvert_All()->转换所有引脚(A0-14,A1-15,A2-16,A3-17)Select_Pin()->选择引脚进行转换(0/1/14、0/1/15、0/1/16,0/1/17)0-模仿/1-数字/14-15-16-17-数字N_Pins()->要转换的引脚数(1-4)
2022/10/23 21:38:44 3KB C++
1
数据集中1951-2010年数据基于地面基础气象材料建设项目归档的"1951-2010年中国国家级地面站数据更正后的月报数据文件(A0/A1/A)基础材料集"研制。
2011年1月-2012年5月数据基于各省上报到国家气象信息中心的地面月报数据文件(A文件)研制。
2012年6-7月数据基于国家气象信息中心实时库数据研制。
实时库中该部分数据来自实时上传的地面自动站逐小时数据文件(Z文件)及日值数据文件、数据集包括气温、气压、降水等八个因子
2022/10/15 13:53:25 135.42MB 气象数据
1
•Alpha-Beta剪枝(Alpha-Betapruning)对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;
在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。
于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。
各种各样的这种算法用于所有的强力Othello程序。
(同样用于其他棋类游戏,如国际象棋和跳棋)。
为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。
•估值这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。
我将要叙述三种不同的估值函数范例。
我相信,大多数的Othello程序都可以归结于此。
棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格子值要小。
忽视对称的话,棋盘上有10个不同的位置,每个格子根据三种可能性赋值:黑棋、白棋和空。
更有经验的逼近是在游戏的不同阶段对格子赋予不同的值。
例如,角在开局阶段和中局开始阶段比终局阶段更重要。
采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。
基于举动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。
观察表明,许多人类玩者努力获得最大的举动力(可下棋的数目)和潜在举动力(临近对手棋子的空格,见技巧篇)。
如果代码有效率的话,可以很快发现,它们提高棋力很多。
基于模版的估值:正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大举动力和潜在举动力是全局特性,但是他们可以被切割成局部配置,再加在一起。
棋子最少化也是如此。
这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。
估值合并:一般程序的估值基于许多的参数,如举动力、潜在举动力、余裕手、边角判断、稳定子。
但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。
设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。
其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
2017/8/17 10:01:12 884KB 黑白棋 算法 论文
1
clearall;closeall;fs=8e5;%抽样频率fm=20e3;%基带频率n=2*(6*fs/fm);final=(1/fs)*(n-1);fc=2e5;%载波频率t=0:1/fs:(final);Fn=fs/2;%耐奎斯特频率%用正弦波产生方波%==========================================twopi_fc_t=2*pi*fm*t;A=1;phi=0;x=A*cos(twopi_fc_t+phi);%方波am=1;x(x>0)=am;x(x<0)=-1;figure(1)subplot(321);plot(t,x);axis([02e-4-22]);title('基带信号');gridoncar=sin(2*pi*fc*t);%载波ask=x.*car;%载波调制subplot(322);plot(t,ask);axis([0200e-6-22]);title('PSK信号');gridon;%=====================================================vn=0.1;noise=vn*(randn(size(t)));%产生乐音subplot(323);plot(t,noise);gridon;title('乐音信号');axis([0.2e-3-11]);askn=(ask+noise);%调制后加噪subplot(324);plot(t,askn);axis([0200e-6-22]);title('加噪后信号');gridon;%带通滤波%======================================================================fBW=40e3;f=[0:3e3:4e5];w=2*pi*f/fs;z=exp(w*j);BW=2*pi*fBW/fs;a=.8547;%BW=2(1-a)/sqrt(a)p=(j^2*a^2);gain=.135;Hz=gain*(z+1).*(z-1)./(z.^2-(p));subplot(325);plot(f,abs(Hz));title('带通滤波器');gridon;Hz(Hz==0)=10^(8);%avoidlog(0)subplot(326);plot(f,20*log10(abs(Hz)));gridon;title('Receiver-3dBFilterResponse');axis([1e53e5-31]);%滤波器系数a=[100.7305];%[10p]b=[0.1350-0.135];%gain*[10-1]faskn=filter(b,a,askn);figure(2)subplot(321);plot(t,faskn);axis([0100e-6-22]);title('通过带通滤波后输出');gridon;cm=faskn.*car;%解调subplot(322);plot(t,cm);axis([0100e-6-22]);gridon;title('通过相乘器后输出');%低通滤波器%==================================================================p=0.72;gain1=0.14;%gain=(1-p)/2Hz1=gain1*(z+1)./(z-(p));subplot(323);Hz1(Hz1==0)=10^(-8);%avoidlog(0)plot(f,20*log10(abs(Hz1)));gridon;title('LPF-3dBresponse');axis([05e4-31]);%滤波器系数a1=[1-0.72];%(z-(p))b1=[0.140.14];%gain*[11]so=filter(b1,a1,cm);so=so*10;%addgainso=so-mean(so);%removesDCcomponentsubplot(324);
2016/5/8 20:09:29 589KB matlab PSK 调制与解调
1
共 47 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡