python完成逻辑回归的例子,值得学习
2022/9/3 11:07:39 63KB 逻辑回归 python
1
一、机器学习的分类:监督学习(supervisedlearning):线性回归,逻辑回归,KNN,神经网络,决策树,集成学习,SVM,贝叶斯,协同过滤,LDA无监督学习(unsupervisedlearning):聚类、关联规则,PCA降维……二、机器学习中主要处理问题包括:分类,回归,聚类,降维……
2018/1/7 4:29:10 9KB 机器学习 理论总结
1
【为什么学习机器学习算法?】人工智能是国家发展的战略,未来发展的必然趋势。
将来很多岗位终将被人工智能所代替,但人工智能人才只会越来越吃香。
中国人工智能人才缺口超过500万,人才供不应求。
要想掌握人工智能,机器学习是基础、是必经之路,也是极其重要的一步。
【课程简介】很多人认为机器学习难学,主要是因为其过于关注各种复杂数学公式的推导,从而忽略了公式的本质。
本课程通过对课件的精心编排,课程内容的不断打磨,重磅推出机器学习8大经典模型算法,对晦涩难懂的数学公式,通过图形展示其特点和本质,快速掌握机器学习模型的核心理论,将重点回归到机器学习算法本身。
本课程选取了机器学习经典的8大模型:线性回归、逻辑回归、决策树、贝叶斯分类器、支持向量机(SVM)、集成学习、聚类以及降维再也不用东拼西凑,一门课程真正掌握机器学习核心技术。
它们是人工智能必经之路,机器学习必学技术,企业面试必备技能。
?《深度学习与神经网络从原理到实践》课程现已上线,这使得人工智能学习路径愈加完备,地址:https://edu.csdn.net/course/detail/29539
2018/5/3 18:47:12 3.37MB 人工智能 机器学习 算法 数学 技术 回顾
1
文件包含一个数据集(csv文件)和一个可执行代码(py文件),是对红酒数据集的分类训练与测试。
可作为人工智能、机器学习初学者的学习资料。
模型训练基于逻辑回归算法,数据集和测试集按照8:2的比例进行划分。
数据集前11列为红酒的属性,最初一列是红酒的分类标签,此处红酒总共有六类(标签分别为3、4、5、6、7、8),每一行为一个红酒样本。
通过对机器学习分类模型输入特征值,得出此红酒的种类。
需要Python版本3.8及以上;
需要引入第三方库pandas和sklearn。
1
为预测某条微博的具体转发者,在微博是否会被转发的研究基础上,提出了基于社交网络拓扑结构、用户行为及用户间关联三个层面的逻辑回归分类算法,并针对该算法进行真实数据集检测。
实验结果表明,该预测算法与未考虑网络拓扑结构的算法相比功能显著提升,为实现社交媒体信息传播轨迹精准预测打下了重要基础。
1
人工智能实验练习,包括线性回归,逻辑回归,深度神经网络,循环神经网络,卷积神经网络。
含数据和python代码,代码文件请用Jupyterlab翻开。
2018/2/4 18:09:15 13.47MB 人工智能 神经网络 回归模型
1
本文针对火灾报警系统问题,建立熵权-topsis逻辑回归等数学模型,旨在通过所建模型来选取可靠的探测器、提高报警准确率及改进各辖区综合管理水平,从而减少我国火灾事故。
针对问题一,首先根据地址、机号和回路,确定真实火灾数为418起。
接着根据题目要求,基于可靠性和故障率两个指标建立综合评价模型。
由于可靠性为效益型指标,而故障率为成本型指标,故将故障率通过数学公式转换为效益型指标,即完善率。
指标确定后,运用熵权法确定各指标权重,最后利用topsis法构建各类型部件评价模型,对16种部件进行综合评价,帮助政府选择最可靠的5种火灾探测器类型,分别为光束感烟、手动报警按钮、智能光电探头、点型感温探测器、线性光束感烟。
针对问题二,建立基于logistic回归的区域报警部件类型智能研判模型。
本文选择故障次数、消防大队及探测器类型3个变量作为自变量,误报与否作为因变量,将消防大队和探测器类型两个无序分类变量变为虚拟变量,利用logistic回归模型预测辖区内某类型部件发出报警信息正确的概率,经检验模型的真实性为。
经检验结果有所偏差,故进行模型优化用woe值代替原值计算,使得结果愈加真实可靠。
2021/11/25 4:12:28 291KB 数学建模
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡