顶尖棋牌游戏源码_完整源码带游戏源码,资源总大小862MB
2025/2/4 11:29:04 68B 棋牌游戏
1
《VisualC++MFC棋牌类游戏编程实例》配套光盘,包括五子棋、飞行棋、斗地主、中国象棋、麻将5个游戏的源码。
由于空间限制,麻将未上传。
2025/1/31 18:29:15 3.05MB VC++ MFC 游戏
1
PHP环境搭建也是一门技术,本文为大家分享一篇PHP语言编写的微信h5斗牛源码服务端环境搭建的图文教程,具有很好的参考价值,希望对大家有所帮助。
首先我们要准备几个必用的东西-1.lunix服务器-2.已备案域名-3.已认证服务号服务器linuxcentos7先安装环境使用宝塔安装环境(www.bt.cn)Nginx1.14mysql5.6php7.1环境安装完,用宝塔导入数据库文件数据库文件导入之后,修改根目录下的两个配置文件修改文件data/conf/db.php'DB_TYPE'=>'mysql','DB_HOST'=>'127.0.0.1','DB_NAME'=>'数据库名','DB_USER'=>'数据库用户','DB_PWD'=>'数据库密码',修改文件auto/php54n/config.php$serverdk='11801';$host='127.0.0.1';$username='数据库用户';$password='数据库密码';$dbname='数据库名';$charset='utf8mb4';$machine_http='http://127.0.0.1:5432/';$url='http://你的域名';配置文件修改之后,登录后台http://域名/admin后台默认帐号admin默认密码www.cxnd.com建议登录之后修改密码服务器开放1-60000端口然后cd/www/wwwroot/你网站的根目录/auto/运行./1.sh启动游戏服务端这里已经全部安装完成,然后是进入后台配置微信公众号进入https://mp.weixin.qq.com,登录微信公众平台,在开发----->基本配置获取开发者ID(AppID)和开发者密码(AppSecret),并设置微信IP白名单,然后在设置----->公众号设置----->功能设置,配置你的业务域名,JS接口安全域名,网页授权域名。
然后进入网站后台填写微信appid和微信key,填完之后,点击保存按钮,然后再点击微信access_token的获取按钮,获取他的access_token。
这里就全部配置完成了。
2025/1/17 10:54:02 129.9MB 棋牌源码
1
OATH发布的基于事件的OTP标准算法(RFC4226)HOTP,已经被业界公认为OTP算法的行业标准之一
2025/1/14 18:06:43 54KB OTP 动态口令 OATH Token
1
基于AT89C51单片机的篮球比赛记分牌设计,可以从0~99适合国内的篮球比赛计分,此资源只作学习交流,禁止任何人用做商业用途,谢谢。

2025/1/14 10:44:07 220KB AT89C51 单片机 记分牌设计 篮球比赛
1
车牌识别素材600张(蓝、绿、黄)绿牌包含两种类型。
资源来自很多场景如:生活拍照、高速抓拍、室内、室外、光线不足、光照过度、倾斜等等很多场景。
2025/1/11 20:21:09 506B LPR
1
自己花钱买的电子书,高清完整版!很实用的教材,读起来一点也不晦涩。
目录译者序前言第1章概论1.1推动因素1.2基本计算机组成1.3分布式系统的定义1.4我们的模型1.5互连网络1.6应用与标准1.7范围1.8参考资料来源参考文献习题第2章分布式程序设计语言2.1分布式程序设计支持的需求2.2并行/分布式程序设计语言概述2.3并行性的表示2.4进程通信与同步2.5远程过程调用2.6健壮性第3章分布式系统设计的形式方法3.1模型的介绍3.1.1状态机模型3.1.2佩特里网3.2因果相关事件3.2.1发生在先关系3.2.2时空视图3.2.3交叉视图3.3全局状态3.3.1时空视图中的全局状态3.3.2全局状态:一个形式定义3.3.3全局状态的“快照”3.3.4一致全局状态的充要条件3.4逻辑时钟3.4.1标量逻辑时钟3.4.2扩展3.4.3有效实现3.4.4物理时钟3.5应用3.5.1一个全序应用:分布式互斥3.5.2一个逻辑向量时钟应用:消息的排序3.6分布式控制算法的分类3.7分布式算法的复杂性第4章互斥和选举算法4.1互斥4.2非基于令牌的解决方案4.2.1Lamport算法的简单扩展4.2.2Ricart和Agrawala的第一个算法4.2.3Maekawa的算法4.3基于令牌的解决方案4.3.1Ricart和Agrawala的第二个算法4.3.2一个简单的基于令牌环的算法4.3.3一个基于令牌环的容错算法4.3.4基于令牌的使用其他逻辑结构的互斥4.4选举4.4.1Chang和Roberts的算法4.4.2非基于比较的算法4.5投标4.6自稳定第5章死锁的预防、避免和检测5.1死锁问题5.1.1死锁发生的条件5.1.2图论模型5.1.3处理死锁的策略5.1.4请求模型5.1.5资源和进程模型5.1.6死锁条件5.2死锁预防5.3一个死锁预防的例子:分布式数据库系统5.4死锁避免5.5一个死锁避免的例子:多机器人的灵活装配单元5.6死锁检测和恢复5.6.1集中式方法5.6.2分布式方法5.6.3等级式方法5.7死锁检测和恢复的例子5.7.1AND模型下的Chandy,Misra和Hass算法5.7.2AND模型下的Mitchell和Merritt算法5.7.3OR模型下的Chandy,Misra和Hass算法第6章分布式路由算法6.1导论6.1.1拓扑6.1.2交换6.1.3通信类型6.1.4路由6.1.5路由函数6.2一般类型的最短路径路由6.2.1Dijkstra集中式算法6.2.2Ford的分布式算法6.2.3ARPAnet的路由策略6.3特殊类型网络中的单播6.3.1双向环6.3.2网格和圆环6.3.3超立方6.4特殊类型网络中的广播6.4.1环6.4.22维网格和圆环6.4.3超立方6.5特殊类型网络中的组播6.5.1一般方法6.5.2基于路径的方法6.5.3基于树的方法第7章自适应、无死锁和容错路由7.1虚信道和虚网络7.2完全自适应和无死锁路由7.2.1虚信道类7.2.2逃逸信道7.3部分自适应和无死锁路由7.4容错单播:一般方法7.52维网格和圆环中的容错单播7.5.1基于局部信息的路由7.5.2基于有限全局信息的路由7.5.3基于其他故障模型的路由7.6超立方中的容错单播7.6.1基于局部信息的模型7.6.2基于有限全局信息的模型:安全等级7.6.3基于扩展安全等级模型的路由:安全向量7.7容错广播7.7.1一般方法7.7.2使用全局信息的广播7.7.3使用安全等级进行广播7.8容错组播7.8.1一般方法7.8.2基于路径的路由7.8.3使用安全等级在超立方中进行组播第8章分布式系统的可靠性8.1基本模型8.2容错系统设计的构件模块8.2.1稳定存储器8.2.2故障-停止处理器8.2.3原子操作8.3节点故障的处理8.3.1向后式恢复8.3.2前卷式恢复8.4向后恢复中的问题8.4.1检查点的存储8.4.2检查点方法8.5处理拜占庭式故障8.5.1同步系统中的一致协议8.5.2对一个发送者的一致8.5.3对多个发送者的一致8.5.4不同模型下的一致8.5.5对验证消息的一致8.6处理通信故障8.7处理软件故障第9章静态负载分配9.1负载分配的分类9.2静态负载分配9.2.1处理器互连9.2.2任务划分9.2.3任务分配9.3不同调度模型概述9.4基于任务优先图的任务调度9.5案例学习:两种最优调度算法9.6基于任务相互关系图的任务调度9.7案例学习:域划分9.8使用其他模型和目标的调度9.8.1网络流量技术:有不同处理器能力的任务相互关系图9.8.2速率单调优先调度和期限驱动调度:带实时限制的定期任务9.8.3通过任务复制实现故障安全调度:树结构的任务优先图9.9未来的研究方向第10章动态负载分配10.1动态负载分配10.1.1动态负载分配的组成要素10.1.2动态负载分配算法10.2负载平衡设计决策10.2.1静态算法对动态算法10.2.2多样化信息策略10.2.3集中控制算法和分散控制算法10.2.4移植启动策略10.2.5资源复制10.2.6进程分类10.2.7操作系统和独立任务启动策略10.2.8开环控制和闭环控制10.2.9使用硬件和使用软件10.3移植策略:发送者启动和接收者启动10.4负载平衡使用的参数10.4.1系统大小10.4.2系统负载10.4.3系统交通强度10.4.4移植阈值10.4.5任务大小10.4.6管理成本10.4.7响应时间10.4.8负载平衡视界10.4.9资源要求10.5其他相关因素10.5.1编码文件和数据文件10.5.2系统稳定性10.5.3系统体系结构10.6负载平衡算法实例10.6.1直接算法10.6.2最近邻居算法:扩散10.6.3最近邻居算法:梯度10.6.4最近邻居算法:维交换10.7案例学习:超立方体多计算机上的负载平衡10.8未来的研究方向第11章分布式数据管理11.1基本概念11.2可串行性理论11.3并发控制11.3.1基于锁的并发控制11.3.2基于时戳的并发控制11.3.3乐观的并发控制11.4复制和一致性管理11.4.1主站点方法11.4.2活动复制11.4.3选举协议11.4.4网络划分的乐观方法:版本号向量11.4.5网络分割的悲观方法:动态选举11.5分布式可靠性协议第12章分布式系统的应用12.1分布式操作系统12.1.1服务器结构12.1.2八种服务类型12.1.3基于微内核的系统12.2分布式文件系统12.2.1文件存取模型12.2.2文件共享语义12.2.3文件系统合并12.2.4保护12.2.5命名和名字服务12.2.6加密12.2.7缓存12.3分布式共享内存12.3.1内存相关性问题12.3.2Stumm和Zhou的分类12.3.3Li和Hudak的分类12.4分布式数据库系统12.5异型处理12.6分布式系统的未来研究方向附录DCDL中的通用符号列表
2024/12/20 22:56:08 29.64MB 分布式系统设计 jie wu著 高传善
1
麻将胡牌算法以及AI算法,麻将AlphaGo,java代码,可直接运行
2024/12/11 22:55:20 36.41MB AI麻将 麻将Alph
1
关于这是的源代码,该项目由lab10集体与KunsthausGraz等人合作发起,于2017年10月启动。
有关更多信息,请访问和(如果您对应用程序如何使用以太坊和IPFS感兴趣,则尤其是)。
安装和运行Web应用程序安装后端和前端依赖项:npmicdfrontendnpmi保存时,前端和后端都会自动重载源文件,使用nodemon的node.js后端,react.js前端webpack都会自动重装源文件。
可以使用以下方法启动组合的前端/后端开发环境:npmstartEslint已配置,但未强制执行。
请尝试提交您的代码,而不减少错误/警告。
要手动运行eslint,请使用:npmlint要在每个保存/更改的源文件上自动运行单元测试:npmruntest----watchWeb应用架构该Web应用程序负责向用户展示游戏,处理用户输入并将信息分发到各种其他子系统,例如数据库,区块链和BIX。
前端和后端之间的通信是使用经过时间检验且易于使用的socket.io库完成的。
需要建立通信体系结构,以免引起服务器潜在的拥塞,尤其是应避免(可
2024/12/9 10:34:09 1.33MB nodejs socket-io ethereum ipfs
1
OntoNotes5.0的中文部分包括250K字的新闻专线数据,270K字的广播新闻和170K的广播会话。
新闻专线的数据来自中国树库5.0。
250K包括100K的新华新闻数据(chtb_001.fid到chtb_325.fid)和来自Sinorama新闻杂志的150K数据(chtb_1001.fid到chtb_1078.fid)。
广播新闻数据是来自TDT4的274K字,并且是从LDC为自动内容提取(ACE)程序注释的数据中选择的。
已将这些文件的编号chtb_2000.fid分配给chtb_3145.fid。
广播对话数据是170K字,取自LDC的GALE数据。
50K的原始中文数据也用英文注释,另外55K的中文数据代表原始英语广播对话翻译成中文。
Web数据包括215K令牌,其中15K来自P2.5评估,86K来自Dev09数据。
此外,110K的Web数据由40K并行中文源数据和70K并行英文原始数据组成。
电话会话语料库包括大约100K的中文CallHome数据,用解析,命题,名称和共同参考信息注释。
2024/12/4 15:47:12 67.81MB conll Ontonotes
1
共 241 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡