基于学习方法构造的冗余字典可更加准确地提取信号的结构特征,也是近几年的研究热点。
论文在研究了基于KSVD字典学习的图像去噪算法的基础上,将相关系数匹配准则和字典裁剪方法相结合,提出一种改进的字典学习算法,进一步,为了利用图像的非局部自相似性信息,提出将自相似性作为一个约束正则项融入到图像去噪模型,提出基于改进字典学习和非局部自相似性的图像去噪算法。
大量实验验证,与传统KSVD去噪方法相比,该方法在提高同质区域平滑性的同时还能保留更多的纹理、边缘等细节特征。
2024/4/11 16:04:54 4.55MB 图像 去噪 稀疏表示 KSVD
1
SuccessfulAlgorithmicTrading的中英文版本,以及相关的代码。
主要介绍可以回测,实盘的量化开发的流程,主要语言是python。
也介绍了量化平台开发中的涉及到的各种坑。
比如如何避免未来函数的回测等。
也涉及到现在流行的机器学习算法在量化交易的应用等。
2024/3/25 22:26:20 8.56MB 量化 python
1
深度增强学习算法的PyTorch实现(策略梯度/生成对抗模仿学习)
2024/3/23 21:07:08 5.41MB Python开发-机器学习
1
基于特征联合概率分布和实例的迁移学习算法
2024/3/21 21:07:56 340KB 研究论文
1
讲述Q学习算法基本原理,并通过几个小例子初步了解q学习算法应用。
2024/3/13 13:31:41 174KB Q学习算法
1
决策树方法在分类、预测、规则提取等领域有着广泛应用。
在20世纪70年代后期和80年代初期,机器学习研究者J.RossQuinilan提出了ID3[5-2]算法以后,决策树在机器学习、数据挖掘邻域得到极大的发展。
Quinilan后来又提出了C4.5,成为新的监督学习算法。
1984年几位统计学家提出了CART分类算法。
ID3和ART算法大约同时被提出,但都是采用类似的方法从训练样本中学习决策树。
2024/3/11 4:56:35 1.4MB 数据挖掘 大数据 Rapidminer
1
对数据降维,进一步精选数据,ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。
内部附有两类样本数据可供使用。
2024/3/7 18:38:05 18.06MB 对数据降维
1
由于神经网络具有拟合非线性的能力,所以可以用神经网络来处理内部模型的非线性特性,因此这种内部模型采用神经网络的非线性PLS方法得到了广泛的应用。
传统的前馈神经网络在训练中采用梯度学习算法,网络中的参数需要迭代更新,不仅训练时间长,而且容易导致局部极小和过度训练等问题,另外其多隐层的结构也导致了样本训练速度慢,训练误差大"此外,Bartlett提出对于已达到最小训练误差的前馈神经网络,权值越小泛化特性越好,而传统的梯度学习算法仅仅考虑训练误差最小,忽视了权值大小对网络的影响,这些问题都将影响到模型的泛化特性。
2024/3/4 2:50:15 16KB elm&pls
1
目录第1章线性神经网络的工程应用1.1系统辨识的MATLAB实现1.2自适应系统辨识的MATLAB实现1.3线性系统预测的MATLAB实现1.4线性神经网络用于消噪处理的MATLAB实现第2章神经网络预测的实例分析2.1地震预报的MATLAB实现2.1.1概述2.1.2地震预报的MATLAB实例分析2.2交通运输能力预测的MATLAB实现2.2.1概述2.2.2交通运输能力预测的MATLAB实例分析2.3农作物虫情预测的MATLAB实现2.3.1概述2.3.2农作物虫情预测的MATLAB实例分析2.4基于概率神经网络的故障诊断2.4.1概述2.4.2基于PNN的故障诊断实例分析2.5基于BP网络和Elman网络的齿轮箱故障诊断2.5.1概述2.5.2基于BP网络的齿轮箱故障诊断实例分析2.5.3基于Elman网络的齿轮箱故障诊断实例分析2.6基于RBF网络的船用柴油机故障诊断2.6.1概述2.6.2基于RBF网络的船用柴油机故障诊断实例分析第3章BP网络算法分析与工程应用3.1数值优化的BP网络训练算法3.1.1拟牛顿法3.1.2共轭梯度法3.1.3LevenbergMarquardt法3.2BP网络的工程应用3.2.1BP网络在分类中的应用3.2.2函数逼近3.2.3BP网络用于胆固醇含量的估计3.2.4模式识别第4章神经网络算法分析与实现4.1Elman神经网络4.1.1Elman神经网络结构4.1.2Elman神经网络的训练4.1.3Elman神经网络的MATLAB实现4.2Boltzmann机网络4.2.1BM网络结构4.2.2BM网络的规则4.2.3用BM网络解TSP4.2.4BM网络的MATLAB实现4.3BSB模型4.3.1BSB神经模型概述4.3.2BSB的MATLAB实现第5章预测控制算法分析与实现5.1系统辨识5.2自校正控制5.2.1单步输出预测5.2.2最小方差控制5.2.3最小方差间接自校正控制5.2.4最小方差直接自校正控制5.3自适应控制5.3.1MIT自适应律5.3.2MIT归一化算法第6章改进的广义预测控制算法分析与实现6.1预测控制6.1.1基于CARIMA模型的JGPC6.1.2基于CARMA模型的JGPC6.2神经网络预测控制的MATLAB实现第7章SOFM网络算法分析与应用7.1SOFM网络的生物学基础7.2SOFM网络的拓扑结构7.3SOFM网络学习算法7.4SOFM网络的训练过程7.5SOFM网络的MATLAB实现7.6SOFM网络在实际工程中的应用7.6.1SOFM网络在人口分类中的应用7.6.2SOFM网络在土壤分类中的应用第8章几种网络算法分析与应用8.1竞争型神经网络的概念与原理8.1.1竞争型神经网络的概念8.1.2竞争型神经网络的原理8.2几种联想学习规则8.2.1内星学习规则8.2.2外星学习规则8.2.3科荷伦学习规则第9章Hopfield神经网络算法分析与实现9.1离散Hopfield神经网络9.1.1网络的结构与工作方式9.1.2吸引子与能量函数9.1.3网络的权值设计9.2连续Hopfield神经网络9.3联想记忆9.3.1联想记忆网络9.3.2联想记忆网络的改进9.4Hopfield神经网络的MATLAB实现第10章学习向量量化与对向传播网络算法分析与实现10.1学习向量量化网络10.1.1LVQ网络模型10.1.2LVQ网络学习算法10.1.3LVQ网络学习的MATLAB实现10.2对向传播网络10.2.1对向传播网络概述10.2.2CPN网络学习及规则10.2.3对向传播网络的实际应用第11章NARMAL2控制算法分析与实现11.1反馈线性化控制系统原理11.2反馈线性控制的MATLAB实现11.3NARMAL2控制器原理及实例分析11.3.1NARMAL2控制器原理11.3.2NARMAL2控制器实例分析第12章神经网络函数及其导函数12.1神经网络的学习函数12.2神经网络的输入函数及其导函数12.3神经网络的性能函数及其导函数12.3.1性能函数12.3.2性能函数的导函数第13章Simulink神经网络设计13.1Simulink交互式仿真集成环境13.1.1Simulink模型创建1
2024/3/1 2:25:47 10.12MB MATLAB R2016a 神经网络 案例分析
1
本文使用三种已有的机器学习算法,针对可穿戴传感器采集用户日常行为数据,进行训练和测试等,涉及支持向量机、神经网络和隐藏马尔可夫模型等的研究
2024/2/29 9:10:15 1.51MB 机器学习
1
共 148 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡