提出了一种利用多个图像特征的曝光过度区域检测学习算法。
该算法利用像素的亮度和颜色特征以及光的新特征-色度和边界邻域来构造特征向量。
采用L2正则化的一次逻辑回归方法获得最优分类器mod-e1。
实验结果表明,与直接强度阈值法和其他基于亮度和色彩特征的方法相比,该算法在区域连通性方面能更好地检测出过度曝光区域。
2024/5/20 18:55:43 1.15MB over—exposed region detection; L2
1
BP(BackPropagation)神经网络是一种神经网络学习算法。
其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。
相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。
然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。
此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程,
2024/5/2 21:19:10 6KB tag
1
通过在UCI开源网站上下载CarEvaluation数据集,对其使用机器学习算法进行分析,分别使用了分类算法,回归算法,聚类算法,文件中附数据集以及代码,代码使用jupyter运行即可,代码中介绍比较详细,通熟易懂,从头至尾皆可跑通!
2024/4/28 2:31:52 70KB UCI数据集 机器学习 分类 回归
1
《强化学习精要核心算法与TensorFlow实现》冯超著共386页;
内容简介《强化学习精要:核心算法与TensorFlow实现》用通俗幽默的语言深入浅出地介绍了强化学习的基本算法与代码实现,为读者构建了一个完整的强化学习知识体系,同时介绍了这些算法的具体实现方式。
从基本的马尔可夫决策过程,到各种复杂的强化学习算法,读者都可以从本书中学习到。
本书除了介绍这些算法的原理,还深入分析了算法之间的内在联系,可以帮助读者举一反三,掌握算法精髓。
书中介绍的代码可以帮助读者’快速将算法应用到实践中。
《强化学习精要:核心算法与TensorFlow实现》内容翔实,语言简洁易懂,既适合零基础的人员人门学习,也适合相关科研人员研究参考。
1
这是一本零基础就能读懂的算法书籍,读者不需要因为自己没有语言基础而畏惧。
书籍的第2章便是一个C语言的入门教程,内容非常易懂,并且十分实用,阅读完这章就可以对本书需要的C语言基础有一个较好的掌握。
本书已经覆盖了大部分基础经典算法,不仅可以作为考研机试和PAT的学习教材,对其他的一些算法考试(例如CCF的CSP考试)或者考研初试的数据结构科目的学习和理解也很有帮助,甚至仅仅想学习经典算法的读者也能从本书中学到许多知识,本书还有配套的《算法笔记上机训练实战指南》本书的作者是同样经历过考研机试和各类算法考试的专家型学长,知晓这类考试中的痛点,以及考生在学习算法时容易产生困惑的地方,因此可以把本书看作是学长为你奉献的满满的经验干货,这是有价值的东西。
2024/4/25 6:19:36 194.6MB 算法笔记 PAT
1
《深度学习:算法到实战》全套PPT
2024/4/19 5:38:36 88.86MB 深度学习 计算机视觉
1
基于学习方法构造的冗余字典可更加准确地提取信号的结构特征,也是近几年的研究热点。
论文在研究了基于KSVD字典学习的图像去噪算法的基础上,将相关系数匹配准则和字典裁剪方法相结合,提出一种改进的字典学习算法,进一步,为了利用图像的非局部自相似性信息,提出将自相似性作为一个约束正则项融入到图像去噪模型,提出基于改进字典学习和非局部自相似性的图像去噪算法。
大量实验验证,与传统KSVD去噪方法相比,该方法在提高同质区域平滑性的同时还能保留更多的纹理、边缘等细节特征。
2024/4/11 16:04:54 4.55MB 图像 去噪 稀疏表示 KSVD
1
SuccessfulAlgorithmicTrading的中英文版本,以及相关的代码。
主要介绍可以回测,实盘的量化开发的流程,主要语言是python。
也介绍了量化平台开发中的涉及到的各种坑。
比如如何避免未来函数的回测等。
也涉及到现在流行的机器学习算法在量化交易的应用等。
2024/3/25 22:26:20 8.56MB 量化 python
1
深度增强学习算法的PyTorch实现(策略梯度/生成对抗模仿学习)
2024/3/23 21:07:08 5.41MB Python开发-机器学习
1
基于特征联合概率分布和实例的迁移学习算法
2024/3/21 21:07:56 340KB 研究论文
1
共 154 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡