之前的资源自动涨到50积分,现重新上传1、本例程所用的SDK版本:ESP8266_RTOS_SDK-1.4.x2、创建MQTT任务,连接MQTT服务器,订阅(接收)和发布(发送)信息3、具有UART发送和接收功能4、具有Smartconfig功能,可通过按键和UART命令触发一键配置连接WIFI
2024/8/19 1:24:22 2.24MB esp8266 mqtt
1
一个简单的C++实现UDP组播发送和接收的程序
2024/8/11 5:25:36 315KB udp 组播 多播
1
1、图书管理系统以UNIX系统文件部分系统调用为基础设计一个简易的图书管理系统。
要求实现:图书的录入、查询、借阅、清理、统计等功能、还要实现对每天的借阅情况进行统计并打印出统计报表,操作界面要尽量完善。
图书资料信息必须保存在文件中。
2、信号通信与进程控制(l)进程的创建:编写一段程序,使用系统调用fork()创建两个或多个子进程。
当此程序运行时,在系统中有一个父进程和其余为子进程在活动。
(2)进程的控制:在程序中使用系统调用lockf()来给每一个进程加锁,实现进程之间的互斥。
(3)进程通信:①软中断通信;
②在程序中使用实例signal(SIGINT,SIG_IGN)和signal(SIGQUIT,SIG_IGN)进行通信操作,观察执行结果,并分析原因。
(4)软中断的捕获与重定义。
首先定义一个服务函数function(),然后利用signal(sig,function)系统调用来实现中断的捕获与改道。
(5)使用操作系统保留给用户的信号SIGUSR1和SIGUSR2进行通信。
(6)扩展程序,使之成为信号或事件驱动的应用程序。
3、管道通信利用UNIX系统提供的管道机制实现进程间的通信。
(1)管道通信。
利用pipe()和lockf()系统调用,编写程序,实现同族进程间的通信。
使用系统调用pipe()建立一条管道线;
创建子进程P1、P2、…。
子进程Pi分别向管道各写信息,而父进程则从管道中读出来自于各子进程的信息,实现进程家族间无名管道通讯。
扩展之,使之成为客户/服务器模式,并完成一定的任务(自己定义)。
(2)命名管道通信:利用mkfifo(name,mode)或mknod(name,mode,0)创建一个命名管道,然后利用它和文件部分系统调用实现不同进程间的通信。
改造之,使之成为客户/服务器模式,并完成一定的任务(自己定义)。
4、进程间通信(IPC):消息机制(1)消息的创建、发送和接收使用系统调用msgget(),msgsnd(),msgget(),及msgctl()编制一长度为1K的消息发送和接收的程序。
1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。
SERVER和CLIENT也可分别为2个各自独立的程序。
2)SERVER端建立一个Key为175的消息队列,等待其他进程发来的消息。
当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。
SERVER每接收到一个消息后显示一句“(server)received”。
3)CLIENT端使用key为175的消息队列,先后发送类型从10到1的消息,然后退出。
最后的一个消息,即是SERVER端需要的结束信号。
CLIENT每发送一条消息后显示一句“(client)sent”。
4)父进程在SERVER和CLIENT均退出后结束。
(2)功能扩展:在sever端创建一个服务函数,从而实现C/S通讯要求SERVER每接收到一次数据后不仅仅显示“(server)received”,而是做一些其它事情,比如读取或查询某个文件,或者执行一个shell命令等。
此功能可由设计者自己定义。
在此基础上可以扩展客户端,比如设计一个菜单界面,接收不同的选项,并发送到服务器端,请求对方提供服务。
5、进程间通信(IPC):共享内存机制(1)共享存储区的创建,附接和断接使用系统调用shmget(),shmat(),msgdt(),shmctl(),编制一长度为1K的消息发送和接收的程序。
1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。
SERVER和CLIENT也可分别为2个各自独立的程序。
2)SERVER端建立一个Key为375的共享区,并将第一个字节置为-1,作为数据空的标志,等待其他进程发来的消息。
当该字节的值发生变化时,表示收到了信息,并进行处理。
然后再次把它的值设为-1。
如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER。
SERVER每接收到一次数据后显示“(server)received”。
3)CLIENT端建立一个Key为375的共享区,当共享取得第一个字节为-1时,SERVER端空闲,可发送请求。
CLIENT随即填入9到0。
期间等待Server端的再次空闲。
进行完这些操作后,CLIENT退出。
CLIENT每发送一次数据后显示“(client)sent”。
4)父进程在SERVER和CLIENT均退出后结束。
(2)功能扩展:在sever端创建一个服务函数,从而形成C/S通讯模式要求SERVER每接收到一次数据后不仅仅显示“(server)received”,而是做一些其它事情,比如
2024/7/19 3:04:26 918KB 操作系统
1
自己做的java小游戏(UTF-8)GoBang.java主类,游戏执行入口.包括所有的事件定义.负责各个类模块之间的通信.游戏的大脑ChessBroad.java棋盘类.其中包括落子设计,胜负判断等Comuter.java通讯器类.其中包括网络数据的发送和接收Controler.java控制面板类.其中包括聊天界面和连接主机的界面Message.java消息类.包括消息类型,落子坐标和消息内容
1
资源为deb包,双击即可安装,可通过桌面图标直接启动使用,无需root,真正的图形应用,完全脱离终端,已在Ubuntu14.04下测试通过。
“串口助手”提供以下功能①ASCII码、十六进制和中文收发,可计算CRC校验。
②自动扫描可用串口(笔记本电脑上一般没有串口,若未接“U转串”,串口号一项将无内容)③文件发送和接收④缓冲区自动清空⑤在线参数更改⑥内容存储⑦定时发送⑧互动显示
2024/6/30 10:58:52 890KB 串口 ubuntu
1
利用API函数实现了串口通信功能,发送和接收可选择字符格式,含有周期性发送功能,有兴趣可以帮忙优化一下
2024/6/19 21:15:49 12.55MB 串口通信 API函数 VS2010
1
在安卓的设备上,通过串口实现对串口设备进行调试,可以选择设备、设定波特率,实现串口数据的发送和接收。
2024/6/3 6:57:52 160KB 安卓 串口 调试 源代码
1
使用Socket结合SMTP/POP3邮件协议发送和接收邮件
2024/5/12 9:43:20 8KB 邮件 SMTP POP3
1
该协议是FC协议的FC1~3层协议,是理解FC的基础协议,必看。
FC-0层定义了FC中的物理部分,包括光纤、连接器以及不同传输介质和传输速率所对应的光学和电器特性参数。
FC-1层中定义了FC的底层传输协议,包括串行编码、解码和链路状态维护。
数据帧及数据包的发送和接收是在FC-2(Protocol)层实现的,FC-2层定义了帧结构、命令集、序列、交换、分类服务等内容。
FC-3层中定义了一组服务用于公共的单一节点中的多个端口交叉其中包括组搜寻(HuntGroups)和分组广播(Multicast)。
2024/4/26 21:53:56 2.46MB FC协议
1
以前做的,交叉编译后可以放到arm板子上给台式机发送信息,台式机用这个软件也可以接收com信息。
2024/4/19 14:37:52 613KB 串口 qt 发送 接收
1
共 114 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡