卷积编解码,实现删余操作,多项式为【171,133】,约束长度为7,可直接用。
也有其他形式的多项式,需要自己更改
2024/10/16 12:26:14 1KB matlab
1
基于VGG19的图像风格迁移,如果没有vgg-19文件运行utils代码是会下载。
在styles文件夹中选择更改要迁移的图,包含了风格图片,内容图片替换成自己要进行操作的图片即可。
是可以直接运行跑通的。
有疑问的话可以留言询问。
2024/10/10 11:45:39 225KB 图像风格迁移
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
基于卷积神经网络的手写数字识别,工具使用Google的人工智能TensorFlow库,识别准确率高,代码使用python3.0以上版本
2024/10/5 4:20:30 5KB 数字识别 CNN
1
%用于一书%%离散信号和系统%conv_m-改进的线性卷积子程序(第22页)%conv_tp-用Toeplitz矩阵计算的线性卷积(第34页)%evenodd-将实信号分解为偶和奇两部分(第15页)%impseq-产生脉冲序列(第6页)%sigadd-信号相加运算(第8页)%sigfold-信号折叠运算(第10页)%sigmult-信号乘法运算(第9页)%sigshift-信号时移运算(第9页)%stepseq-产生阶跃序列(第6页)%离散时间付利叶变换(第z变换)%pfe2rfz-在z域由部分分式展开为有理函数(第四章)%rf2pfez-在z域由有理函数展开为部分分式(第四章)%离散付利叶变换%circevod-实信号分解为循环偶分量和循环奇分量(第132页)%circonvt-时域中的循环卷积(第139页)%cirshftt-时域中的循环移位(第146页)%dfs-计算离散付利叶系数(第109页)%dft-计算离散付利叶变换(第120页)%hsolpsav-采用FFT高速分段卷积的重叠保留法(第157页)%idfs-计算逆离散付利叶级数(第110页)%idft-计算逆离散付利叶变换(第121页)%mod-计算m=nmodN(第119页)%ovrlpsav-分段卷积的重叠保留法(第147页)%数字滤波器结构%cas2dir-级联到直接的形式转换(第173页)%casfiltr-IIR和FIR滤波器的级联实现(第172页)%cplxcomp-比较两个复数对(第176页)%dir2cas-直接到级联的型式转换(第171页)%dir2fs-直接形式到频率采样型的转换(第187页)%dir2ladr-IIR直接形式极__零点到格型/梯形的转换(第199页)%dir2latc-FIR直接形式到全零点格型形式的转换(第193页)%dir2par-直接到并联形式的转换(第175页)%dir2paro-直接到并联形式的转换(用于旧版信号处理工具箱)%ladr2dir-格型/梯形形式到IIR直接形式的转换(第199页)%ladrfilt-格型/梯形形式的IIR滤波器实现(第200页)%latc2dir-全零点格型形式到FIR直接形式的转换(第194页)%latcfilt-FIR滤波器的格型形式的实现(第194页)%par2dir-并联形式到直接形式的转换(第177页)%parfiltr-IIR滤波器的并联形式的实现(第177页)%FIR滤波器设计% ampl_res -由FIR滤波器脉冲响应求其幅频特性(第271页)%blackman-布莱克曼窗函数(第230页)%freqz_m-改进型的freqz子程序(第233页)%Hr_Type1-计算1型FIR低通滤波器(第215页)%Hr_Type2-计算2型FIR低通滤波器(第216页)%Hr_Type3-计算3型FIR低通滤波器(第216页)%Hr_Type4-计算4型FIR低通滤波器(第
2024/10/4 22:44:49 31KB 数字信号 matlab 算法集合
1
MATLAB实现卷积码编译码。
包含viterbi仿真还有一些编码以及译码的基本知识。
2024/10/2 16:46:05 503KB MATLAB 卷积码编译码
1
matlab例程,用于多重卷积函数。
DSPwithMatlabbyProakisandIngle
2024/10/2 13:17:35 333B matlab conv_m
1
基于FPGA的卷积神经网络加速器
2024/10/2 13:47:03 3.11MB 卷积神经网络
1
利用fft实现线性卷积。
已知序列x1=[1234],x2=[136542];
利用conv函数求x1和x2的线性卷积y(n)并绘出图形;
另外,利用fft求x1和x2的9点循环卷积,并绘出图形;
在用fft求x1与x2的8点和10点循环卷积,并绘出图形,比较四次结果,说明线性卷积与循环卷积的关系。
2024/9/26 21:18:12 841B 实现线性卷积
1
利用卷积神经网络对轴承故障数据进行分类,通过构造简单的卷积神经网络,达到良好的识别分类效果
2024/9/26 9:52:50 5KB 深度学习 卷积神经网络
1
共 365 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡