首页 人工智能 深度学习     /    python实现的CNN代码

python实现的CNN代码

上传者: weixin_43166276 | 上传时间: | 文件大小:60KB | 文件类型:rar
python实现的CNN代码
本资料为基于python的卷积神经网络(CNN)实现layer文件夹中包括卷积层、池化层、全连接层、relu层等基础层没有调用tensorflow,pytorch等深度学习框架,手动实现了各层的反向传播BP算法 本软件ID:10840855

文件下载

资源详情

[{"title":"(37个子文件60KB)python实现的CNN代码","children":[{"title":"code","children":[{"title":"criterion","children":[{"title":"euclidean_loss.py <span style='color:#111;'>1.35KB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-36.pyc <span style='color:#111;'>246B</span>","children":null,"spread":false},{"title":"softmax_cross_entropy.cpython-36.pyc <span style='color:#111;'>1.34KB</span>","children":null,"spread":false},{"title":"euclidean_loss.cpython-36.pyc <span style='color:#111;'>1.04KB</span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'>99B</span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'>6.00KB</span>","children":null,"spread":false},{"title":"softmax_cross_entropy.py <span style='color:#111;'>1.57KB</span>","children":null,"spread":false}],"spread":true},{"title":"optimizer.py <span style='color:#111;'>1.07KB</span>","children":null,"spread":false},{"title":"plot.py <span style='color:#111;'>1.28KB</span>","children":null,"spread":false},{"title":"homework_3.ipynb <span style='color:#111;'>131.11KB</span>","children":null,"spread":false},{"title":"im2col.py <span style='color:#111;'>2.14KB</span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"homework_3-checkpoint.ipynb <span style='color:#111;'>5.42KB</span>","children":null,"spread":false}],"spread":true},{"title":"layers","children":[{"title":"pooling_layer.py <span style='color:#111;'>2.92KB</span>","children":null,"spread":false},{"title":"reshape_layer.py <span style='color:#111;'>679B</span>","children":null,"spread":false},{"title":"im2col.py <span style='color:#111;'>2.04KB</span>","children":null,"spread":false},{"title":"fc_layer.py <span style='color:#111;'>2.20KB</span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-36.pyc <span style='color:#111;'>425B</span>","children":null,"spread":false},{"title":"fc_layer.cpython-36.pyc <span style='color:#111;'>1.79KB</span>","children":null,"spread":false},{"title":"reshape_layer.cpython-36.pyc <span style='color:#111;'>1.02KB</span>","children":null,"spread":false},{"title":"sigmoid_layer.cpython-36.pyc <span style='color:#111;'>975B</span>","children":null,"spread":false},{"title":"conv_layer.cpython-36.pyc <span style='color:#111;'>3.10KB</span>","children":null,"spread":false},{"title":"tanh_layer.cpython-36.pyc <span style='color:#111;'>1.08KB</span>","children":null,"spread":false},{"title":"pooling_layer.cpython-36.pyc <span style='color:#111;'>2.22KB</span>","children":null,"spread":false},{"title":"relu_layer.cpython-36.pyc <span style='color:#111;'>883B</span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'>243B</span>","children":null,"spread":false},{"title":"conv_layer.py <span style='color:#111;'>3.77KB</span>","children":null,"spread":false},{"title":"relu_layer.py <span style='color:#111;'>969B</span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'>6.00KB</span>","children":null,"spread":false},{"title":"sigmoid_layer.py <span style='color:#111;'>912B</span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"optimizer.cpython-36.pyc <span style='color:#111;'>1.33KB</span>","children":null,"spread":false},{"title":"im2col.cpython-36.pyc <span style='color:#111;'>1.86KB</span>","children":null,"spread":false},{"title":"plot.cpython-36.pyc <span style='color:#111;'>1.91KB</span>","children":null,"spread":false},{"title":"network.cpython-36.pyc <span style='color:#111;'>1009B</span>","children":null,"spread":false},{"title":"solver.cpython-36.pyc <span style='color:#111;'>2.99KB</span>","children":null,"spread":false}],"spread":true},{"title":"solver.py <span style='color:#111;'>4.23KB</span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'>10.00KB</span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'>487B</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • weixin_47153721:
    缺数据集,或者测试集,无法直接运行2020-05-27
  • ektewuu:
    缺数据集,或者测试集,无法直接运行2020-05-27
  • seawolf_123:
    资源很好,不错2019-11-18
  • seawolf_123:
    资源很好,不错2019-11-18

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明