机载雷达,恶略气象条件下的飞行控制
1
《嵌入式系统软件设计中的常用算法》根据嵌入式系统软件设计需要的常用算法知识编写而成。
基本内容有:线性方程组求解、代数插值和曲线拟合、数值积分、能谱处理、数字滤波、数理统计、自动控制、数据排序、数据压缩和检错纠错等常用算法。
从嵌入式系统的实际应用出发,用通俗易懂的语言代替枯燥难懂的数学推导,使读者能在比较轻松的条件下学到最基本的常用算法,并为继续学习其他算法打下基础。
">《嵌入式系统软件设计中的常用算法》根据嵌入式系统软件设计需要的常用算法知识编写而成。
基本内容有:线性方程组求解、代数插值和曲线拟合、数值积分、能谱处理、数字滤波、数理统计、自动控制、数据排序、数据压缩[更多]
2024/9/12 16:23:27 17.97MB 常用算法
1
将渐变波导模式方程(WKB积分方程)化为分段积分,以波导某一模式在不同波长下的转折点为分段点,当波长相差很小时,相应的转折点相差也很小,可在各个分段积分中作折线近似,从而从理论上推出确定波导轮廓数据的递推式.以所得轮廓必须满足光滑条件为判据,最后定出波导的轮廓.该方法尤其适用于单模渐变波导,而且无需事先假设待定轮廓的函数形式.本文对双曲止割和抛物线轮廓的理想波导进行了计算机模拟,结果证明该方法的精度达到10~(-3)甚至于更高.而且理论上具有分割愈密,精度愈高的优点.
2024/9/12 1:56:26 3.39MB 逆WKB法 折射率轮 波导 inverse
1
地面三维激光扫描的点云配准误差研究。
针对闭合条件下地面三维激光扫描点云配准产生的闭合差,基于测量平差理论,提出一种闭合差分配方法。
1.14MB 点云配准
1
----icm---条件迭代算法,条件迭代算法基于MRF----ICM----
2024/9/10 14:43:17 2KB icm 条件迭代
1
无线控制器(2017)目标是实现一种体感控制系统。
Android应用语言:C#IDE和引擎:Unity先决条件:项目版本:5.6.3职责:•开发了无线控制器以实现体感控制系统。
•使用TCP/IP协议设置网络系统。
(UDP可能是一个更好的选择!)•从智能手机(客户端)访问陀螺仪和加速度计信息,并通过网络将其传输到服务器。
我创造了什么:这是一个个人项目,我为此项目创建了所有内容。
贡献者:金峰(Jeffery)刘
2024/9/9 20:42:12 32.97MB C#
1
苹果音乐令牌生成器有助于开始创建在iOS上使用MusicKit所需的AppleMusicJWT令牌的一些步骤最近变化添加了该解决方案的Ruby版本。
入门这些说明补充了在AppleMusicAPI参考文档的“入门”部分中找到的信息。
首先,您必须按照的说明进行操作接下来,按照以下说明帮助以JSONWeb令牌格式创建开发人员令牌。
先决条件运行macOSSierra(10.12.5)的开发人员计算机,您将需要运行Terminal并具有root访问权,或者可以运行sudo在按照上述URL上的说明进行操作之后,您现在应该拥有3条数据:*.p8文件中的MusicKit私钥您的AppleDeveloper帐户中的10位数字密钥标识符您的10位Apple开发者帐户小组ID正在安装步骤1简单方法:在命令行上运行以下命令:sudoeasy_installpip旧方法:从下载Python软件包管理器Downloadtheget-pip.pyscriptfromhttps://pip.pypa.io/en/stable/instal
2024/9/9 12:40:55 6KB ruby python apple-music jwt-token
1
智能合约是一个事务处理系统,使数字化承诺在满足触发条件时被自动执行,而不会产生或者修改智能合约。
相比于传统合约,智能合约在合同主体、执行的效率和违约成本都有很大不同,使得信息验证成本显著降低,加上自动执行和不可篡改性,极大提高了商业社会多方协作的效率。
因此,智能合约技术是区块链应用中最主要的特征,也是区块链被称为颠覆性技术的主要原因。
2024/9/8 19:24:09 11.21MB 区块链应用
1
本设计的目的是通过编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁地发生。
2024/9/8 5:20:06 118KB 银行家算法
1
利用二维光子晶体仿真设计了四信道光滤波器.首先根据时域耦合模理论导出了实现100%信道耦合的条件;然后根据该条件设计了四信道滤波器,并利用时域有限差分法进行了仿真.仿真结果显示,四信道耦合效率均超过96%,当晶格常量取570nm时,四信道的中心频率在1520nm到1580nm之间,信道间隔均小于20nm,信道间窜扰很小。
505KB 11
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡