针对自主吸尘机器人非结构化的工作环境及避障的实时性要求,提出融合了超声波传感器和红外传感器的混合视觉算法,并且基于BP神经网络的传感器信息融合技术进行了实验。
1
为了处理传统BP(BackPropagation)神经网络收敛较慢的问题,通过BP神经网络搭建火点预测模型,采用一种自适应学习率的方法改进BP神经网络,经比较该算法收敛较快,模型输出可达到预期效果.同时利用现场可编程逻辑门阵列(FPGA)的动态可重构技术实现了改进后的神经网络,通过仿真和结果测试,该设计在预测结果的基础上又大大减少了预测时间,为环保预测、检测轨迹规划提供了一定的理论基础.
1
包含“王权富贵-MNIST-BP神经网络”“王权富贵-MNIST-BP神经网络仅训练部分版本”“王权富贵-MNIST-数据集熟习+线性神经网络”这些系列!每句话备注!
1
matlab神经网络代码,可直接运用。
2016/7/18 17:32:01 2KB BP神经网络 MATLAB
1
1、利用历史数据进行风电功率预测,数据的质量对预测准确度有很大的影响,此外,了解风速、功率在不同时段的变化特性,采取针对性、差异化的参数配置,有助于提高预测算法的效率和模型对具体数据的顺应性。
本课题主要采用K均值聚类算法对风速和功率数据进行聚类,剔除不合理的数据,再通过BP神经网络实现短期风电功率预测。
2、BP神经网络、kmeans聚类算法。
3、matlab仿真;
1
基于bp神经网络的矿石加工质量控制问题摘要 本文主要研究温度等因素对矿石加工质量控制问题。
提高矿石加工质量,对节约不可再生资源和能源,推动节能减排,助力“双碳”’目标的实现,具有重要的意义。
针对问题一,我们要实现在给定系统温度和原矿参数的情况下,预测可能性最大的产品的指标。
由于在刚开始调温时,系统还未稳定,所以指标参数会有大幅度变化。
因而我们要首先对附件一中的数据进行预处理,去除其中的不正常数据。
同时,将系统一和系统二的温度,四个原矿参数作为输入,四个产品指标作为输出,利用bp神经网络训练它,用训练好的神经网络,来预测题目已知温度和原矿参数条件下的产品指标。
最终得到结果为:80.9556、22.1783、10.6264、21.6435和78.3544、26.4780、13.5826、28.2638。
针对问题二,问题二与问题一的问法正好相反,要我们通过其他数据来预测系统一和系统二温度。
也可以使用bp神经网络来求解。
不同的是,问题二的模型应改为八输入二输出。
最终得到的结果为:1757.2,389和1854.5,405.6。
针对问题三,同样可以采用BP神经网络预测模型来预测产
2020/6/17 18:04:34 2.6MB 数学建模
1
机器学习BP神经网络代码,合适小白,直接导入数据,就能跑。
贼方便
2017/5/25 2:19:50 1KB 神经网络 深度学习
1
本软件是一个使用BP神经网络为制造模型,构建的一个二层网络学习模型,其中输入维数为2,隐层单元数为2,输出为1,模拟了与或门的学习过程。
作者通过制造,使得网络最佳效果能在400次左右能收敛,使用者可以通过多次运行来观察效果。
2021/7/19 2:12:01 65KB BP,神经网络
1
植物的品种识别svm和Bp神经网络的研讨基于Matlab
2020/6/5 2:05:03 526.77MB 树叶
1
熔喷非织造材料是口罩生产的重要原材料,具有诸多优点。
但是,这种材料非常细,在使用过程中经常因为压缩回弹性差而导致其功能得不到保障。
因此,科学家对其进行了更新,制备出新型材料。
新型材料工艺参数较多,并且不同参数还存在相互影响。
基于以上可知,建立工艺参数与产品功能之间的关系模型,将有助于疫情防控与产业发展。
本文针对插层熔喷非织造材料的功能控制展开深入研究,通过典型相关、XGBoost、皮尔逊person相关性、BP神经网络等方法,使用MATLAB、Python、SPSS、EXCEL等软件编程进行处理,得出了题目中结构变量、产品功能的变化规律;
建立了工艺参数与结构变量之间的预测模型;
建立了皮尔逊相关性判定模型,分析了结构变量与产品功能以及各自之间的关系等。
最终结合研究成果得出了实际产品生产中能够使得过滤效率尽量的高的同时力求过滤阻力尽量的小的工艺参数。
包含2022年华数杯详细代码与论文
2016/8/24 18:07:46 1.11MB 文档
1
共 345 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡