前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
具有随机测量丢包的非线性切换离散时间系统的网络迭代学习控制
2023/12/18 1:16:56 988KB 研究论文
1
本资源提供了一个自动驾驶汽车程序启动扩展卡尔曼滤波项目C++代码。
所谓扩展卡尔曼滤波器,就是适用于非线性系统的卡尔曼滤波器,可以更广泛的应用在项目中。
2023/12/16 17:13:19 2.54MB 扩展卡尔曼滤 卡尔曼滤波 C++
1
提出一种基于改进重复控制器(modifiedrepetitivecontroller,MRC)的三相四线逆变器设计方法,能够有效抑制非线性负载对输出电压的扰动。
为解决重复控制器稳定性和控制性能之间的矛盾,在其补偿环节增加自由度-零相位滤波器;以误差衰减速率和滤波器的复杂度为优化目标,以系统鲁棒稳定性为约束,给出基于微粒群优化方法的零相位滤波器优化设计,构建基于鲁棒优化零相位滤波器的MRC。
该MRC的优化设计考虑了系统的未建模误差,具有鲁棒性,更便于工业应用。
三相四线逆变器采用载波调制,最大化利用直流电压,无需复杂的数据处理,易于实现。
理论分析和试验结果证明了三相四线逆变器的MRC及其优化设计方法的有效性和可行性。
1
使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式
2023/12/3 16:12:48 7KB SVM,NLP
1
实验一线性典型环节实验;
实验二二阶系统的性能研究;
实验三系统时域分析实验;
实验四二阶系统的性能频域研究;
实验五校正实验;
实验六非线性典型环节实验;
实验七非线性系统实验。
1
第1章p神经网络的数据分类——语音特征信号分类1第2章bp神经网络的非线性系统建模——非线性函数拟合11第3章遗传算法优化bp神经网络——非线性函数拟合21第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36章基于bp_adaboost的强分类器设计——财务预警建模45章pid神经元网络解耦控制算法——多变量系统控制54章rbf网络的回归——非线性函数回归的实现65章grnn的数据预测——基于广义回归神经网络的货运量预测73章离散hopfield神经网络的联想记忆——数字识别81章离散hopfield
2023/11/30 12:27:01 8.26MB MATLAB 神经网络 案例 分析
1
本demo主要是提供了SVM在数据集为线性、非线性可分情况下的分类面可视化,对于svm初学者而言,具有一定的借鉴意义。
2023/11/29 17:19:51 280KB svm分类面
1
混合萤火虫和粒子群优化,是一种元启发式搜索优化算法,可以对非线性问题搜索最优解,收敛速度快,不会陷入局部最优
2023/11/29 12:12:23 5KB hfpso 先进优化算法
1
主要是用matlab仿真了非线性光纤光学中的群速度色散效应
2023/11/27 13:19:29 802B GVD
1
共 747 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡