二自由度三自由度机械臂simmechanicsPD控制-three_jixiebi.mdl下一步自适应PD控制中的惯性矩阵、离心力和哥氏力如何将simmechanics机械臂联合起来希望大家多给意见
2024/8/6 3:57:57 84KB matlab
1
可以仿真BA模型的建立,输出网络图像,得到稀疏矩阵
2024/8/5 9:38:56 2KB 无标度网络 BA模型 MATLAB
1
该文档为中北大学往年博士入学考试数学科目矩阵理论试题
1
仿真mimo的matlab代码※功能:产生带有相关性MIMO信道的信道冲激响应.※输入参数说明:NR接收天线阵元的个数,这里考虑简单的情况,令NR=2;NT发送天线阵元的个数,这里考虑简单的情况,令NT=4;时间变量;※输出参数说明:MIMO信道的信道冲激响应矩阵f(t),它是时间变量t的函数.
2024/8/4 6:39:25 714B mimo matlab
1
实现关联矩阵与邻接矩阵相互转化的matlab代码Correlationmatrixandadjacencymatrixtoachievemutualtransformationofmatlabcode
2024/8/4 3:46:05 533B 关联矩阵 邻接矩阵
1
MOTOMANHP6的位姿矩阵的计算,建立坐标系,确定参数,matlab计算程序,姿态矩阵逆解
2024/8/1 4:23:21 451KB 算法
1
电子版,有目录。
本教材适用于工学硕士和工程硕士研究生数学基础课——矩阵论.全书共分7章,主要内容为线性空间与线性变换、Jordan标准形、矩阵分解、矩阵的广义逆、矩阵分析、矩阵的Kronecker积与Hadamard积和非负矩阵介绍.为工学硕士研究生的应用研究提供所需的数学工具.为他们的继续学习提供必需的数学基础.
2024/7/31 0:27:20 1.79MB 矩阵论 第二版 杨明 刘先忠
1
现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。
现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。
    假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。
我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。
    μjμj的表达式为:μj=1Nj∑x∈Xjx(j=0,1)μj=1Nj∑x∈Xjx(j=0,1)    ΣjΣj的表达式为:Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)    由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。
由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)wargmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w    我们一般定义类内散度矩阵SwSw为:Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T    同时定义类间散度矩阵SbSb为:Sb=(μ0−μ1)(μ0−μ1)TSb=(μ0−μ1)(μ0−μ1)T    这样我们的优化目标重写为:argmaxwJ(w)=wTSbwwTSwwargmax⏟wJ(w)=wTSbwwTSww    仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量!而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!    注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1),也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
2024/7/30 21:57:26 3KB MATLAB 人脸识别 LDA knn
1
sigmoid函数:nonlin(输出矩阵,矩阵,[是否求导(boolean)])底数矩阵:NumInd(输出矩阵,底常数,矩阵,[矩阵是否要系数(Double)])矩阵指数:ArrInd(输出矩阵,指常数,矩阵,[矩阵是否要系数(Double)])数加矩阵:NumAdd(输出矩阵,加常数,矩阵,[矩阵是否要系数(Double)])数减矩阵:NumSub(输出矩阵,被减数,矩阵,[矩阵是否要系数(Double)])数乘矩阵:NumDot(输出矩阵,被乘数,矩阵,[矩阵是否要系数(Double)])矩阵加法:ArrAdd(输出矩阵,矩阵A,矩阵B,[结果是否要系数(Double)])矩阵减法:ArrSub(输出矩阵,矩阵A,矩阵B,[结果是否要系数(Double)])哈达玛积:ArrDot(输出矩阵,矩阵A,矩阵B,[结果是否要系数(Double)])数乘矩阵:NumDot(输出矩阵,乘常数,矩阵)矩阵乘法:Dot(输出矩阵,矩阵A,矩阵B)矩阵可视化:ArrVis(矩阵)输出字符串转置矩阵:ArrT(输出矩阵,矩阵,[结果是否要系数(Double)])一维数组矩阵化:ArrA(输出矩阵,列数,一维数组)元素矩阵化:Arr(输出矩阵,列数,元素1,元素2,元素3...)矩阵绝对值:ArrAbs(输出矩阵,矩阵,[结果是否要系数(Double)])矩阵元素平均:Mean(矩阵)输出双精度小数随机小数矩阵:Rand(输出矩阵,行数,列数,[矩阵是否要系数])随机整数矩阵:intRand(输出矩阵,行数,列数,下限,上限)
2024/7/30 3:02:33 10KB VB 矩阵
1
Freeman分解MATLAB代码,内含一块全极化SAR影像所提取的相干矩阵,可直接运行
2024/7/29 4:50:58 9.05MB freeman分解
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡