[||]Ruby很棒的机器学习Ruby机器学习链接和资源的精选清单是一个领域-通常嵌套在研究下-具有许多实际应用,这是由于所得算法能够在没有明确的程序员指令的情况下系统地实现特定解决方案。
显然,许多算法需要定义以供查看,或者需要很大的数据才能得出解决方案。
此精选列表包括有关使用编程语言进行库,数据源,教程和演示。
清单上的许多有用资源来自的开发,我们的以及我们自己在各种ML应用程序上的日常工作。
:sparkles:欢迎每一个!通过拉取请求添加链接或创建问题以开始讨论。
在关注我们,请使用#RubyMLhash标签来传播这个词!内容:sparkles:讲解请帮助我们填写此部分!:grinning_face_with_big_eyes:[][][][][][][]机器学习图书馆用纯Ruby或用其他编程语言编写的算法,并带有适当的Ruby绑定。
构架-Weka的JRuby绑定,通过Weka实现的不同ML算法。
-Ruby的人工智能。
通用分类器模块,允许贝叶斯分类和其他类型的分类。
[]
2025/10/13 21:58:43 111KB ruby ruby-gem list machine-learning
1
LOF离群因子算法,是基于密度的用于噪声和异常数据检测的常用算法,它通过为每个数据计算异常因子,来判断该数据是否为噪声或干扰数据。
2025/10/13 21:49:01 2KB LOF MATLAB
1
微机原理与接口技术课程的课程设计,题目是模拟计数器运算,内含实验报告,源程序代码,保证能用。
2025/10/13 18:51:37 104KB 微机原理
1
TR2-兰多古墓丽影II物品随机分配器谢谢Eycore-很多想法和位置Nenad_-很多想法和位置chreden-对于TRView,在开发和选择位置期间具有不可估量的价值。
请访问该项目,为::b122251-对于TRMod(最初用于在本机实施之前修改级别),您可以在此处获取出色的命令行工具::JW-dev/Bahamete-用于脚本随机化的初步工作Lahm86-感谢他对改进随机发生器的巨大贡献-非常感谢。
请在此处检查他的项目以随机化脚本文件::TRGE是该程序中所有脚本随机化功能的基础。
用法在此处插入大更新文本...种类秘密-将秘密位置随机化,它们是根据随便玩的顺序排序的,因此您应该期望在玉石之前找到一块石头。
物品-随机化标准拾音器(不包括尚未实施的关键物品)。
敌人-随机化您遇到的敌人的类型。
贴图-使用TexturePacks
2025/10/13 18:40:57 26.86MB C#
1
SD卡、TF卡、SIM卡的AltiumDesigner封装库文件PCB封装,经过实测,很好用,种类全,每种卡有3-4种封装可选
2025/10/13 18:22:40 11KB SD、TF、SIM
1
这是用Python写的一个电影推荐系统,希望对他人有帮助。
亲测可用,谢谢支持。
2025/10/13 15:22:30 1.56MB 推荐系统
1
本系统有用户、商家、管理员3种用户。
用到了Bootstrap,jquery,json等,对于一个jsp课设已足够。
2025/10/13 12:50:16 5.12MB json  jsp ajax bootstrap
1
本资源中包含超市管理系统的实验报告,可以直接上交版。
以及myeclipse下的项目文件。
可以直接添加进行运行验证。
超市管理系统有一下模块:一.基本档案管理设计与开发;
二,采购订货设计与开发;
三,出入库设计与开发;
四,人员部门的设计与开发;
五,管理员的设计与开发。
以及相应信息的增、删、改、查等功能。
    数据库设计(或数据结构设计):数据库中包含以下表:1管理员信息表:用于登陆系统时进行信息的比对。
2职员表:存储企业职员的身份信息。
3采购表:存储采购的商品信息。
4入库表:存储进入仓库的商品信息。
5出库表:存储交易的商品信息。
6基本档案信息表:存储各种企业的基本信息。
2025/10/12 16:12:07 4.24MB Java 课程设计 超市系统
1
---猜拳游戏---整合版包括1.0版本与2.0版本(不用问我为啥更新这么快)我用javaSE写的小游戏,运行环境:javaSE的jdk游戏代码去看我博文哦!!!已经打包成exe文件了!!!打包教程,看我博文!!!
2025/10/12 16:19:37 267KB java javase 小游戏 整合版
1
糖尿病数据集"diabetes.csv"是一个广泛用于统计分析和机器学习任务的数据集,特别是针对深度学习的应用。
这个数据集包含了大量关于糖尿病患者的医疗记录,旨在帮助研究者们预测糖尿病的发展趋势或者评估疾病管理策略的效果。
下面我们将深入探讨该数据集中的关键知识点。
1.数据集结构:通常,CSV(CommaSeparatedValues)文件是一种存储表格数据的格式,每一行代表一个观测值,列则对应不同的特征或变量。
在这个糖尿病数据集中,每一行可能代表一个患者在特定时间点的健康状况。
2.特征详解:-年龄(Age):患者年龄,对于疾病发展有显著影响。
-性别(Sex):患者性别,男性和女性可能面临不同的糖尿病风险。
-BMI(BodyMassIndex):身体质量指数,是衡量体重与身高比例的一个指标,与糖尿病风险相关。
-血压(BloodPressure):血压水平,高血压是糖尿病并发症的重要因素。
-葡萄糖(Glucose):血液中的葡萄糖浓度,直接影响糖尿病的诊断。
-胆固醇(Cholesterol):血液中的胆固醇含量,高胆固醇可能加剧糖尿病并发症。
-心电图(ECG):心电图结果,可以反映心脏健康状况,可能影响糖尿病的整体管理。
-尿蛋白(UrineProtein):尿液中的蛋白质含量,异常可能表明肾脏受损,常见于糖尿病并发症。
-甲状腺刺激激素(TSH):甲状腺功能的指标,甲状腺问题可能与糖尿病有关联。
-以及其他可能的医疗指标和历史数据。
3.目标变量:数据集可能包含一个目标变量,例如“糖尿病进展”或“并发症发生”,用于预测模型的训练和验证。
这个变量可能是二元的(如无/有并发症)或连续的(如疾病严重程度评分)。
4.数据预处理:在使用数据集之前,通常需要进行数据清洗,处理缺失值、异常值,以及可能的分类变量编码。
此外,为了适应深度学习模型,可能需要对数值特征进行标准化或归一化。
5.模型构建:在深度学习中,可以使用各种神经网络架构,如卷积神经网络(CNN)用于特征提取,循环神经网络(RNN)处理时间序列数据,或者全连接网络(FCN)处理一般的数据。
更先进的模型如长短时记忆网络(LSTM)或门控循环单元(GRU)也能用于捕捉患者健康状况随时间变化的模式。
6.训练与评估:模型的训练通常涉及反向传播和优化算法(如梯度下降或Adam)。
评估指标可能包括准确率、召回率、F1分数、AUC-ROC曲线等,具体取决于任务的性质。
7.隐私与伦理:在处理这类个人健康数据时,必须遵守严格的隐私保护规定,确保数据脱敏且匿名化,以保护患者隐私。
8.预测与解释:模型预测的结果需要解释,以便医生和患者理解并采取相应行动。
可解释性机器学习方法如局部可解释性模型(LIME)和SHAP值可以提供洞察模型决策背后的特征重要性。
"diabetes.csv"数据集为糖尿病研究提供了一个宝贵的资源,通过深度学习方法,我们可以挖掘其中的潜在规律,提高疾病预测的准确性,并为患者提供更好的健康管理建议。
在实际应用中,要充分利用数据集,同时确保数据安全和合规性。
2025/10/12 17:01:14 9KB 数据集
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡