【国外电子与通信教材系列】宽带无线数字通信【ISBN】7-5053-7667-5【出版发行项】北京-电子工业出版社【出版日期】2002.9【格式】超星转成的pdf【页数】411页【作者简介】AndreasF.Molisch,奥地利的维也纳理工大学通信与射频工程学院移动通信系的副教授,合编著有《宽带无线数字通信》等。
【本书简介】本书将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
深入的引见。
本书的主要特点是:将宽带无线数字通信系统分成最具有代表性的非均衡系统、单载波非扩频均衡系统、正交频分复用系统和码分多址系统四大类,全面涵盖了当前及未来宽带无线数字通信的最新内容。
本书除了引见基础知识和基本原理以外,还引见了最新的学术前沿及技术进展。
这是一本很好的教科书和技术参考书,适用于电子与通信类专业的高年级本科生、研究生及研究所和企业的工程技术人员。
【目录】第一部分宽带系统引论第1章基础知识1.1什么是宽带系统1.2发展历史参考文献第2章当前及未来的宽带系统2.1DECT和PHS2.2GSM/DCS-19002.3IS-1362.4IS-952.5W-CDMA2.6HIPERLAN-II参考文献第3章无线移动信道3.1平衰落信道3.2时间色散信道:直观描述3.3时间色散信道:系统理论描述3.3.1确定性解释3.3.2随机性解释3.4广义平稳非相关散射WSSUS假设3.4.1广义平稳WSS3.4.2非相关散射3.4.3广义平稳非相关散射WSSUS3.4.4WSSUS系统函数的一些特例3.5表达时间色散信道的参数3.5.1延迟扩展和相关带宽3.5.2延迟窗口和干扰比3.5.3总结3.6时间色散信道模型3.6.1抽头延时线模型3.6.2COST207模型3.6.3Hashemi-Suzuki-Turin模型3.7含有角度色散的模型参考文献第4章概述第5章展望5.1各种方法的比较5.2未来的发展5.2.1自适应天线5.2.2多输入-多输出系统5.2.3多用户检测参考文献第二部分非均衡系统第6章为什么要研究非均衡系统参考文献第7章系统模型7.1发射机7.1.1相移键控7.1.2频移键控7.2信道7.3接收机7.3.1相干和非相干解调7.3.2PSK和CPFSK的差分检测7.3.3GPFSK的鉴频器检测7.4同信道干扰的处理参考文献第8章固定抽样的计算方法8.1一般考虑8.1.1符号序列的平均8.1.2经典接收机的分析8.1.3接收信号的相关特性8.2蒙特卡洛MC模拟方法8.2.1计算概述8.2.2文献评论8.3高斯变量二次型QFGV方法8.3.1有关公式8.3.2文献评论8.4高斯矢量问角度ABGV方法8.5相关矩阵特征值方法8.6群延迟方法8.6.1文献评论8.7差错域方法8.8等效信道模型方法8.9其他方法:文献评论参考文献第9章固定抽样的结果9.1调制.信道和接收机的影响9.2CPFSK9.2.1文献评论9.3FSK9.4相干检测PSK9.5差分检测PSK9.5.1文献评论参考文献第10章降低差错平台的调制方式和接收机结构10.1部分比特检测10.2非线性鉴频器10.3降低差错平台的调制方式参考文献第11章自适应抽样11.1盲自适应抽样11.2具有训练序列的自适应抽样11.3具有训练序列的同步参考文献第12章天线分集12.1天线分集的分类12.2高斯变量二次型QFGV方法12.2.1文献评论12.3差错域方法12.4阴影信道中的分集12.5采用固定抽样的分集结果12.6采用自适应抽样的分集结果参考文献第13章综述与结论参考文献附录A采用固定抽样的比特差错宰计算公式A.1高斯变量二次型QFGV方法的解A.2高斯矢量间角度ABGV方法的解A.3差错域方法的解参考文献附录B第二部分的字母表第三
1
基于51单片机和lm371的发射机程序,功能基本齐全,调试经过!
2022/9/5 10:22:26 3KB lm371 51
1
天线电感选择比TVDD发射电流大的标称值,封装选择尽量小,但不能0805小。
如FM17550,天线发射电流在100mA,可以选择MLF2012DR68KT,680nH,±10%,该电感电流达到150mA。
如使用RC663,电感选择需要比250mA标称值大。
天线采用双端驱动,具有更好的驱动能力。
对应天线区域内的元件,选择5%精度以内的,在使用低功耗侦测卡片(LPCD)功能时,天线区域内元件选择2%精度以内的。
精度10%的元件会导致天线谐振频点偏差,如天线谐振电容在200pF,误差在±20pF,会使得谐振频率偏离±0.6MHz,导致读卡功能严重下降。
在使用LPCD功能时,元件误差会导致误触发读卡或者卡片侦测不到,产品一致性难以保证。
2022/9/4 9:02:56 1.58MB RFID FM1755 LPCD
1
STM32连接CC1101模块的软件发射终端,绝对能用,实际电路测试过的,不是网络上随意找到的那种不能用的驱动!
2022/9/4 3:29:46 1007KB 绝对能用,实际用电路测试过
1
ASTERGDEM数据由日本METI和美国NASA联合研制并免费面向公众分发。
ASTERGDEM数据产品基于“先进星载热发射和反辐射计(ASTER)”数据计算生成,是目前独一覆盖全球陆地表面的高分辨率高程影像数据。
自2009年6月29日V1版ASTERGDEM数据发布以来,在全球对地观测研究中取得了广泛的应用。
但是,ASTERGDEMV1原始数据局部地区存在异常,所以由ASTERGDEMV1加工的数字高程数据产品也存在个别区域的数据异常现象。
ASTERGDEMV2版则采用了一种先进的算法对V1版GDEM影像进行了改进,提高了数据的空间分辨率精度和高程精度。
该算法重新处理了1,500,000幅影像,其中的250,000幅影像是在V1版GDEM数据发布后新获取的影像。
日本METI和美国NASA两个机构对V2版GDEM的数据精度进行了验证,结果显示V2版对V1版中存在的错误做了很好的矫正。
此资源将山东地区所有DEM已经打包下载完成
2021/4/16 8:17:11 213B 30米 数字高程 ASTER GDEMV2
1
激光雷达方程一般方式 激光雷达接收的信号功率等于:发射激光功率分布与目标后向散射系数的卷积,再考虑光学天线、大气传输衰减等因素。
激光雷达方程一般方式可用下式描述:
2015/4/7 14:38:41 2.66MB word
1
龙讯LT9211MIPI扩展芯片LVDS转MIPI芯片datasheet数据手册,Lontium龙迅LT9211是一个高功能转换器,可在MIPIDSI/CSI-2/双端口LVDS和TTL之间进行相互转换,除了24位TTL到24位TTL,同时同步和反序列化。
LT9211反序列化输入的MIPI/LVDS/TTL视频数据,解码数据包,并将格式化后的视频数据流转换为AP与移动显示面板或摄像机之间输出的MIPI/LVDS/TTL发射机。
LT9211可以用作2端口MIPI/LVDS中继器,支持最大14dB输入均衡和可编程预加重,以提高功能。
LT9211还可以用作MIPI/LVDSMuxer和拆分器。
对于MIPI中继器、Muxer和Splitter,我们不支持CSIRAW格式。
LT9211采用先进的CMOS工艺制作,采用7.5x7.5mmQFN64封装。
该包装符合RoHS标准,并规定在-40°C至+85°C的温度下运行。
2017/2/21 16:40:38 702KB stm32 嵌入式硬件 单片机 龙讯LT9211
1
msp430超声波液位计测试程序,测试发波时间,间隔经过家NOP();
测试
2015/10/26 3:24:54 31KB 超声波液位计
1
(下载后文件错误请多次尝试)协作通信思想通过用户间彼此共享天线,互为通信中继,实现虚拟发射分集,从而为MIMO的实用提供了一个可行的思路。
协作通信的核心问题是中继节点的协作协议。
有两种最基本的中继协作方式放大转发(AF)与解码重传(DF),其它各种协作协议的研究,几乎均是建立在这两个固定中继协议之上。
本文通过MATLAB仿真,来验证协作对通信的改善,分析不同信道情况和不同信噪比下的AF与DF的误码率和分集增益,来研究二者的实际功能与所面临的主要问题。
2020/10/11 5:08:01 2.62MB MATLAB 通信
1
《自适应盲均衡技术》初次以水声信道为主要研究对象,以恢复原发射序列为主要目标,利用先进的信号处理理论,系统地论述了水声信道盲均衡理论、算法与应用等方面的研究。
在分析水声信道特点、盲均衡意义与发展进程及盲均衡基础理论之后,详尽论述了基于变步长的常数模盲均衡、基于不同误差测度函数的盲均衡、基于高阶统计量的盲均衡、基于统计特性均衡准则的盲均衡、基于不同切换准则的双模式盲均衡、基于分数间隔的盲均衡等技术。
《自适应盲均衡技术》是国内首部系统论述水声信道盲均衡的专著,内容系统、全面、新颖,理论与应用相结合。
适合于从事信息与通信工程领域的科技工作者研读,也可作为高等学校各相关专业研究生的参考书[1]。
2021/5/18 13:52:34 11.53MB 自适应盲均衡
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡