SAR图像变化检测方法,包括了对数比和均值比两种较为经典的仿真。
本方法从图像像素的角度出发,对图像像素的灰度值进行操作。
分别才用了均值法和对数比法,然后。
本代码适合老手使用,能让初学者从图像像素灰度值的角度去理解SAR图像形变监测的理论
2018/5/5 14:23:13 278KB matlab SAR image
1
第1周面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表)第2周赌博设计:概率的基本概念,古典概型第3周每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性第4周啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布)第5周万事皆由分布掌握:多维随机变量及其分布第6周砖家的统计学:随机变量的期望,方差与协方差第7周上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布第8周点数成金,从抽样推测规律之一:点估计与区间估计第9周点数成金,从抽样推测规律之二:参数估计第10周对或错?告别拍脑袋决策:基于正态总体的假设检验第11周扔掉正态分布:秩和检验第12周预测将来的技术:回归分析第13课抓住表象背后那只手:方差分析第14周沿着时间轴前进,预测电子商务业绩:时间序列分析简介
2020/3/20 13:28:41 204B 大数据 统计学
1
kmeans算法,应用鸢尾花数据进行K均值分类,采用matlab编程
2016/9/11 17:27:32 3KB matlab
1
对数据进行活动窗口均值处理,根据其均值进行数据分类,具有工夫连贯性。
matlab代码
2015/4/11 16:05:07 1KB PAA
1
一个小的均值漂移算法的MATLAB法式,供大家参考一下
2022/9/6 3:21:30 170KB 均值漂移
1
某物体在XY平面做运动,采样周期为1s,该运动系统的形态方程如式(2-1)所示,其中,为系统的形态向量,各形态变量对应地分别表示方向的位置、方向速度、方向的位置、方向的速度。
为零均值高斯白噪声,。
采用方位角传感器测量运动系统的方位角,作为系统的输出。
系统的输出方程如式(2-2)所示:其中是零均值高斯白噪声,。
假设系统的初始形态,,=0.02。
试利用扩展卡尔曼滤波理论求出的最优估计。
要求:(1)利用Matlab或Python编写仿真程序。
(2)给出各形态变量的真值和估计值曲线变化图。
(3)分别给出的真值与估计值之间的误差曲线变化图,并求出误差的均值和方差。
(4)对滤波效果进行分析。
2022/9/3 19:55:27 4KB 卡尔曼滤波 Python 方位角跟随
1
该代码为对噪声图像进行滤波,以完成去噪的功能,为简单基础的matlab练习,扎实的基础必不可少
2022/9/3 0:25:35 491B 去噪
1
利用聚类技术实现纹理图像分割a)针对合成纹理图像(共有4个合成纹理图像,见文件夹:data\Texture_mosaic)中每一个像素提取纹理特征向量(提取纹理特征的方法可以为课堂讲的,也可以自己查找资料);
b)利用聚类技术(推荐用k-均值聚类,可以从网上查找原码)对特征向量空间中的点进行聚类,类别数可根据图像中的实际纹理类数确定。
最后把类属标签映射成图像方式显示(如下图,其中b、d、f、h为相应的基准分割图像)。
2020/5/14 20:01:48 827KB 聚类技术 纹理图像分割
1
提出了一种基于非局部均值(NLM)滤波的相关激光雷达距离像去噪方法,结合滤波后的强度像和原始距离像、背景抑制(B-S)后的中值滤波和NLM滤波等图像融合方法,实现B-S和距离反常抑制。
对不同载噪比的相关激光雷达多目标仿真图像进行了去噪处理。
比较了Lee滤波等方法处理结果。
实验结果表明,采用该方法,能够满足距离像背景噪声抑制、目标上距离值正常和边缘保持三方面要求。
2017/7/2 2:34:44 5.86MB 图像处理 去噪 非局部均 相干激光
1
DBSCAN聚类,是一种基于密度的聚类算法,它类似于均值漂移,DBSCAN与其他聚类算法相比有很多优点,首先,它根本不需要固定数量的簇。
它也会异常值识别为噪声,而不像均值漂移,即使数据点非常不同,也会简单地将它们分入簇中。
另外,它更抗噪音,能够很好地找到任意大小和任意形状的簇。
DBSCAN的聚类过程就是根据核心弱覆盖点来推导出最大密度相连的样本集合,首先随机寻找一个核心弱覆盖样本点,按照Minpts和Eps来推导其密度相连的点,然后再选择一个没有赋予类别的核心弱覆盖样本点,开始推导其密度相连的样本结合,不断迭代到所有的核心样本点都有对应的类别为止。
作者博客中详细介绍了DBSCAN的算法原理,可以通过文章结合学习,代码包含详细注释,只需要导入自己的聚类数据,运行代码便可以得出聚类结论与图像。
2019/2/13 8:01:39 4KB DBSCAN 数学建模 python 算法
1
共 306 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡