用于训练的负样本图片,总共有2500张,都是灰度图,稍加修改,可以用于人脸识别、车辆识别等训练的负样本。
2023/8/12 9:31:49 47.63MB 负样本 灰度图
1
新闻栏目中文文本分类,新闻栏目一共有:体育5000时政5000房产5000家居5000财经5000时尚5000科技5000教育5000娱乐5000游戏5000每个新闻栏目拥有5000条新闻,通过对新闻内容作为样本训练模型,使得该模型能够预测出该条新闻所属的栏目。
2023/8/9 15:39:56 66.03MB 文本分类数据集
1
投影寻踪(projectionpursuit,PP)方法属于直接由样本数据驱动的探索性数据分析方法,是美国科学家Kruscal于20世纪70年代提出的,在高维性、非线性、非正态数据分析处理方面有独到之处,运用matlab编程,其计算步骤如下:(1)指标体系无量纲化;
(2)构造投影指标函数;
(3)构造投影目标函数;
(4)确定最佳投影方向;
(5)确定投影值
2023/8/3 15:48:08 15KB 投影寻踪法 pp matlab
1
中科大李厚强老师的大作业基于BP神经网络的手写字符识别。
matlab代码,训练样本已经分割
2023/8/3 9:15:21 226KB 手写字符识别
1
UWB测距资料,本资料是研创物联开发板的配套资料,资料包含mini3s产品说明手册,开发软件,PC客户端演示软件,定位数据样本,芯片手册和Decawave产品化应用设计参考资料
2023/8/3 9:37:31 105.37MB UWB 测距 室内定位
1
在原有二维数据的基础上增加了样本的深度信息,增强了识别系统对光照、表情等影响因素的鲁棒性。
1
多远线性回归方程C语言程序:程序中以二维数组的形式初始化输入需要进行预测的样本数据,利用对样本数据数组进行转化的函数(huiguifangcheng)求得系数数组,接着利用线性方程求解函数(LinearEquations)对系数数组进行求解,再利用输出函数(yuce)对求得的回归线性方程模型进行输出和检验,最后还要利用预测函数(yuce)对所要预测的值进行预测。
2023/8/3 0:46:20 20KB 线性回归
1
均值漂移算法meanshiftTrack一、实验内容完成基于MeanShift的目标跟踪算法,红框标出目标区域实现实时追踪。
二、算法原理1.在当前帧,计算候选目标的特征2.计算候选目标与初始目标的相似度3.计算权值4.利用MeanShift算法,计算目标新位置在这里插入图片描述5.若新目标中心需位于原目标中心附近,则停止,否则转步骤2三、思路流程截取跟踪目标矩阵rect;
求取跟踪目标的加权直方图hist1;
读取视频序列中的一帧,先随机取一块与rect等大的矩形,计算加权直方图hist2;
计算两者比重函数,如果后者差距过大,更新新的矩阵中心Y,进行迭代(MeanShift是一种变步长可以迅速接近概率密度峰值的方法),直至一定条件(移动步长平方和大于0.5或超过20次迭代)后停止。
2023/8/2 9:24:56 187.81MB DIA 数字图像分析 均值漂移 目标跟踪
1
第一章人工神经网络…………………………………………………3§1.1人工神经网络简介…………………………………………………………31.1人工神经网络的起源……………………………………………………31.2人工神经网络的特点及应用……………………………………………3§1.2人工神经网络的结构…………………………………………………42.1神经元及其特性…………………………………………………………52.2神经网络的基本类型………………………………………………62.2.1人工神经网络的基本特性……………………………………62.2.2人工神经网络的基本结构……………………………………62.2.3人工神经网络的主要学习算法………………………………7§1.3人工神经网络的典型模型………………………………………………73.1Hopfield网络…………………………………………………………73.2反向传播(BP)网络……………………………………………………83.3Kohonen网络…………………………………………………………83.4自适应共振理论(ART)……………………………………………………93.5学习矢量量化(LVQ)网络…………………………………………11§1.4多层前馈神经网络(BP)模型…………………………………………124.1BP网络模型特点 ……………………………………………………124.2BP网络学习算法………………………………………………………134.2.1信息的正向传递………………………………………………134.2.2利用梯度下降法求权值变化及误差的反向传播………………144.3网络的训练过程………………………………………………………154.4BP算法的改进………………………………………………………154.4.1附加动量法………………………………………………………154.4.2自适应学习速率…………………………………………………164.4.3动量-自适应学习速率调整算法………………………………174.5网络的设计………………………………………………………………174.5.1网络的层数…………………………………………………174.5.2隐含层的神经元数……………………………………………174.5.3初始权值的选取………………………………………………174.5.4学习速率…………………………………………………………17§1.5软件的实现………………………………………………………………18第二章遗传算法………………………………………………………19§2.1遗传算法简介………………………………………………………………19§2.2遗传算法的特点…………………………………………………………19§2.3遗传算法的操作程序………………………………………………………20§2.4遗传算法的设计……………………………………………………………20第三章基于神经网络的水布垭面板堆石坝变形控制与预测§3.1概述…………………………………………………………………………23§3.2样本的选取………………………………………………………………24§3.3神经网络结构的确定………………………………………………………25§3.4样本的预处理与网络的训练……………………………………………254.1样本的预处理………………………………………………………254.2网络的训练……………………………………………………26§3.5水布垭面板堆石坝垂直压缩模量的控制与变形的预测…………………305.1面板堆石坝堆石体垂直压缩模量的控制……………………………305.2水布垭面板堆石坝变形的预测……………………………………355.3BP网络与COPEL公司及国内的经验公式的预测结果比较…35§3.6结论与建议………………………………………………………………38第四章BP网络与遗传算法在面板堆石坝设计参数控制中的应用§4.1概述………………………………………………………………………39§4.2遗传算法的程序设计与计算………………………………………………39§4.3结论与建议…………………………………………………………………40参考文献…………………………………………………………………………
2023/8/2 9:24:30 1.66MB 人工神经网络
1
本文件功能:用BP神经网络预测温湿度。
本次仿真,预测模型为8*8*8*1,输入数据为359天数据(一个小时测一个数据,一天数据为24)。
其中350天数据做训练样本,用来训练BP网络模型的权值和阈值,4天用来做测试样本,用来测试3天左右的温湿度预测值。
本次训练效果比较上次仿真较为准确,判定系数可以达到0.8左右(越靠近1表明仿真效果越好),预测值与实际值点状图基本围绕在主对角线左右,MSE平方误差可以达到0.01,BP网络预测输出图也可以看出预测值的变化趋势基本与期望值一致。
本次仿真存在不足:1.未修改学习率、附加动量等参量没有解决BP网络收敛慢的问题。
2.没有使用全局优化的算法,没有解决BP容易陷入极值点的问题。
这种用BP网络来进行预测的模型网上有很多,但是大多数都是预测风力发电等,可能也是因为该BP模型是40年代所提出,我是没有找到有温湿度的预测,该代码纯属自己改写的,并且运行无误,现在分享出来,让大家节省一些时间去研究更有深度的算法。
2023/8/2 9:25:48 2.28MB BP神经网络  温湿度预测
1
共 560 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡