云平台技术指标,包括主机、网络、安全、监控、数据等多方面。
2023/12/1 5:37:31 203KB 云平台
1
软件测试需求是开发测试用例的依据,测试需求分解的越详细精准,表明对所测软件的了解越深,对所要进行的任务内容就越清晰,对测试用例的设计质量的帮助越大。
详细的测试需求还是衡量测试覆盖率的重要指标,测试需求是计算测试覆盖的分母,没有详细的测试需求就无法有效的进行测试覆盖计算。
软件测试执行阶段是由一系列不同的测试类型的执行过程组成的,每种测试类型都有其具体的测试目标和支持技术,每种测试类型都只侧重于对测试目标的一个或多个特征或属性进行测试,准确的测试类型可以给软件测试带事半功倍的效果。
现有的软件测试分析技术不太成熟,对测试需求和测试类型的分析,所采用的方法主要是根据经验进行收集、整理,该方法依赖于测试设计人员的测试经验,由此方法得出的测试需求、测试类型往往导致测试用例设计不充分,测试覆盖度低,测试目的性不强,容易遗漏等缺陷。
可见,如何对测试需求进行细致的整理分析,明确测试执行时的测试类型,是一个亟待解决的问题。
有鉴于此,本方法的主要目的在于提供一种软件测试需求的分析方法,可以方便、详尽的获取测试需求,明确测试执行时需要实施的测试类型。
为实现上述目的,本方法提供了一种软件测试需求分析的方法,包括以下步骤:a)列出软件开发需求中具有可测试性的开发需求;
b)对步骤a)列出的每一条开发需求,形成可测试的分层描述的测试需求;
c)对步骤b)形成的每一条测试需求,从GB/T16260.1-2006《软件工程产品质量第1部分:质量模型》中定义的软件内部/外部质量模型来确定软件产品的质量需求;
d)对步骤c)所确定的质量需求,分析测试执行时需要实施的测试类型;
e)建立测试需求跟踪矩阵,对测试需求进行管理。
2023/12/1 4:31:49 68KB 图示管理系统,excel
1
系统介绍雷达对抗的基本原理、系统的组成、应用的主要技术、系统的主要战术技术指标和主要参数的设计计算
2023/11/26 3:49:01 5.24MB 雷达对抗
1
关于负指数分布M/M/C排队模型(混合制)的计算器,可计算服务概率、平均队长、状态概率等指标
1
在长流程浮选过程中,生产指标难以在线检测,造成操作不及时,影响系统的稳定运行.本文提出了一种基于多源数据的铝土矿浮选过程生产指标集成建模方法.首先结合浮选机理和现场工人经验,分析影响和反映生产指标的多源数据(生产数据和泡沫图像特征数据);然后分别建立各生产指标预测子模型和同步误差补偿子模型;最后采用信息熵和智能协调策略分别构建精矿品位和尾矿品位的集成预测模型.工业验证和工况分析表明,本文集成建模方法具有良好的预测性能和较强的泛化性,为基于生产指标的浮选过程操作参数控制和全流程优化奠定基础.
1
dbtester分布式数据库基准测试仪:etcd,Zookeeper,Consul,zetcd,cetcd它包括github.com/golang/freetype,它部分基于FreeType团队的工作。
绩效分析最新的测试结果可以在找到探索etcd,Zookeeper和Consul一致键值数据存储的性能(2017年2月17日)项目数据库代理数据库客户端系统指标测试数据分析对于etcd,我们建议使用。
所有日志和结果都可以在或找到。
明显警告:Zookeeper使用500个并发客户端写入100万个条目(256字节密钥,1KB值)时的快照#snap
2023/11/22 9:32:55 11.72MB go distributed-systems benchmark database
1
influxdb是目前比较流行的时间序列数据库。
何谓时间序列数据库?什么是时间序列数据库,最简单的定义就是数据格式里包含Timestamp字段的数据,比如某一时间环境的温度,CPU的使用率等。
但是,有什么数据不包含Timestamp呢?几乎所有的数据其实都可以打上一个Timestamp字段。
时间序列数据的更重要的一个属性是如何去查询它,包括数据的过滤,计算等等。
Influxdb是一个开源的分布式时序、时间和指标数据库,使用go语言编写,无需外部依赖。
它有三大特性:时序性(TimeSeries):与时间相关的函数的灵活使用(诸如最大、最小、求和等);
度量(Metrics):对实时大量数据进行计算;
事件(Event):支持任意的事件数据,换句话说,任意事件的数据我们都可以做操作。
同时,它有以下几大特点:schemaless(无结构),可以是任意数量的列;
min,max,sum,count,mean,median一系列函数,方便统计;
NativeHTTPAPI,内置http支持,使用http读写;
PowerfulQueryLanguage类似sql;
Built-inExplorer自带管理工具。
2023/11/22 3:26:28 16.19MB influxdb 1.2.4 windows版
1
对于高速列车在运行过程中因为运行环境造成能耗、舒适、准时和准确停车等指标的不同,运用遗传算法对列车运行的节能性曲线和多目标运行曲线优化,结合列车牵引计算方程和选定的线路约束条件仿真得到列车ATO所要追溯的目标曲线。
结果表明:通过遗传算法优化工况转换点使得列车运行中的惰行比例增加,可以实现列车节能运行,与节能性目标相比,多目标可以较好地保证列车运行中的舒适性,准时性和准确停车等关键性指标。
2023/11/15 12:04:56 586KB 论文研究
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
包含26个数据指标:经度,维度,时间,面积,价钱,楼层,户型,总价等等适合用来做机器学习的资源数据。
2023/11/13 11:41:46 56.02MB 机器学习数据
1
共 516 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡