基于RBF网络辨识的模型参考自顺应控制系统分析与仿真论文资料
2017/8/5 4:40:49 4.09MB RBF网络 自适应控制
1
线性神经网络,BP神经网络,Hopfield神经网格,Elman神经网络,RBF神经网络;
在模型应用模块中实现了六种实际应用:RBF网络的船用柴油机毛病诊断,BP网络的齿轮箱毛病诊断,SOM网络的回热系统毛病诊断,BP网络的设备状态分类器,SOM网络的人口比例样本分类,SOM网络的土壤性状样本分类
1
《MATLAB神经网络43个案例分析》源代码&数据《MATLAB神经网络43个案例分析》目录第1章BP神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN网络的预测----基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类预测——意大利葡萄酒种类识别第15章SVM的参数优化——如何更好的提升分类器的功能第16章基于SVM的回归预测分析——上证指数开盘指数预测.第17章基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第18章基于SVM的图像分割-真彩色图像分割第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用第21章自组织竞争网络在模式分类中的应用—患者癌症发病预测第22章SOM神经网络的数据分类--柴油机故障诊断第23章Elman神经网络的数据预测----电力负荷预测模型研究第24章概率神经网络的分类预测--基于PNN的变压器故障诊断第25章基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选第26章LVQ神经网络的分类——乳腺肿瘤诊断第27章LVQ神经网络的预测——人脸朝向识别第28章决策树分类器的应用研究——乳腺癌诊断第29章极限学习机在回归拟合及分类问题中的应用研究——对比实验第30章基于随机森林思想的组合分类器设计——乳腺癌诊断第31章思维进化算法优化BP神经网络——非线性函数拟合第32章小波神经网络的时间序列预测——短时交通流量预测第33章模糊神经网络的预测算法——嘉陵江水质评价第34章广义神经网络的聚类算法——网络入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化计算——建模自变量降维第37章基于灰色神经网络的预测算法研究——订单需求预测第38章基于Kohonen网络的聚类算法——网络入侵聚类第39章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类第40章动态神经网络时间序列预测研究——基于MATLAB的NARX实现第41章定制神经网络的实现——神经网络的个性化建模与仿真第42章并行运算与神经网络——基于CPU/GPU的并行神经网络运算第43章神经网络高效编程技巧——基于MATLABR2012b新版本特性的探讨
2020/5/22 18:19:56 11.78MB 神经网络
1
优点——RBF神经网络有很强的非线性拟合能力,可映射任意复杂的非线性关系,而且学习规则简单,便于计算机实现。
具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此在彩票等非线性大数据分析预测方面,有着很大的应用市场。
具有局部逼近的优点RBF神经网络是一种功能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。
只要在MATLAB(R2014b)平台上,通过运行径向基神经网络“RBF_SSQ”就可以快速预测。
预测系统推荐两注(参数可修改),单注可每号+-1,最多可12个号复试;
也可直接单注投注。
单注中奖率一般在2个以上,复试一般在4-6个红球。
预测可靠性远远高于网络彩票预测机构的水准。
2022/10/9 15:27:37 184KB 彩票预测
1
GA优化后的RBF神经网络,带无数据可以仿真。
比较测试未用GA算法优化的RBF网络和用GA算法优化的RBF网络逼近能力。
利用GA算法来优化RBF网络中的各种权值。
2022/9/26 9:01:32 3KB RBF GA
1
利用RBF网络(隐含层神经单元个数和学习率等参数可在内部修改,不作为输入参数)学习和训练,并对输入的测试样本做出响应。
输入和输出维数可以多维。
实际运转,逼近y=sin(t)函数效果不错。
2021/3/5 12:33:36 2KB RBF;MATLAB
1
《MATLAB神经网络43个案例分析》是在《MATLAB神经网络30个案例分析》的基础上出版的,部分章节涉及了常见的优化算法(遗传算法、粒子群算法等)与神经网络的结合问题。
《MATLAB神经网络43个案例分析》可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。
《MATLAB神经网络43个案例分析》共有43章目录如下:第1章BP神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN网络的预测----基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类预测——意大利葡萄酒种类识别第15章SVM的参数优化——如何更好的提升分类器的功能第16章基于SVM的回归预测分析——上证指数开盘指数预测.第17章基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第18章基于SVM的图像分割-真彩色图像分割第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用第21章自组织竞争网络在模式分类中的应用—患者癌症发病预测第22章SOM神经网络的数据分类--柴油机故障诊断第23章Elman神经网络的数据预测----电力负荷预测模型研究第24章概率神经网络的分类预测--基于PNN的变压器故障诊断第25章基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选第26章LVQ神经网络的分类——乳腺肿瘤诊断第27章LVQ神经网络的预测——人脸朝向识别第28章决策树分类器的应用研究——乳腺癌诊断第29章极限学习机在回归拟合及分类问题中的应用研究——对比实验第30章基于随机森林思想的组合分类器设计——乳腺癌诊断第31章思维进化算法优化BP神经网络——非线性函数拟合第32章小波神经网络的时间序列预测——短时交通流量预测第33章模糊神经网络的预测算法——嘉陵江水质评价第34章广义神经网络的聚类算法——网络入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化计算——建模自变量降维第37章基于灰色神经网络的预测算法研究——订单需求预测第38章基于Kohonen网络的聚类算法——网络入侵聚类第39章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类第40章动态神经网络时间序列预测研究——基于MATLAB的NARX实现第41章定制神经网络的实现——神经网络的个性化建模与仿真第42章并行运算与神经网络——基于CPU/GPU的并行神经网络运算第43章神经网络高效编程技巧——基于MATLABR2012b新版本特性的探讨
2018/5/7 15:26:16 11.77MB 神经网络 遗传算法 粒子群算法等
1
RBF神经网络逼近函数、辨识模型,包括隐含层参数调整和权值参数调整,还有移植性超好的S函数哦。
simulink法式~
2020/11/17 14:20:05 8KB RBF; S函数
1
读者调用案例的时候,只要把案例中的数据换成自己需要处理的数据,即可实现自己想要的网络。
如果在实现过程中有任何疑问,可以随时在MATLAB中文论坛与作者交流,作者每天在线,有问必答。
该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。
该书另有31个配套的教学视频帮助读者更深入地了解神经网络。
本书可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
图书目录第1章P神经网络的数据分类--语音特征信号分类第2章BP神经网络的非线性系统建模--非线性函数拟合第3章遗传算法优化BP神经网络--非线性函数拟合第4章神经网络遗传算法函数极值寻优--非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计--公司财务预警建模第6章PID神经元网络解耦控制算法--多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN的数据预测--基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆--数字识别第10章离散Hopfield神经网络的分类--高校科研能力评价第11章连续Hopfield神经网络的优化--旅行商问题优化计算第12章SVM的数据分类预测--意大利葡萄酒种类识别第13章SVM的参数优化--如何更好的提升分类器的功能第14章SVM的回归预测分析--上证指数开盘指数预测第15章SVM的信息粒化时序回归预测--上证指数开盘指数变化趋势和变化空间预测第16章自组织竞争网络在模式分类中的应用--患者癌症发病预测第17章SOM神经网络的数据分类--柴油机故障诊断第18章Elman神经网络的数据预测--电力负荷预测模型研究第19章概率神经网络的分类预测--基于PNN的变压器故障诊断第20章神经网络变量筛选--基于BP的神经网络变量筛选第21章LVQ神经网络的分类--乳腺肿瘤诊断第22章LVQ神经网络的预测--人脸朝向识别第23章小波神经网络的时间序列预测--短时交通流量预测第24章模糊神经网络的预测算法--嘉陵江水质评价第25章广义神经网络的聚类算法--网络入侵聚类第26章粒子群优化算法的寻优算法--非线性函数极值寻优第27章遗传算法优化计算--建模自变量降维第28章基于灰色神经网络的预测算法研究--订单需求预测第29章基于Kohonen网络的聚类算法--网络入侵聚类第30章神经网络GUI的实现--基于GUI的神经网络拟合、模式识别、聚类
2021/6/17 23:08:54 61.64MB matlab
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡