基于stm32的双向DCDC变换器设计,包内为设计方案,设计报告,仅供学习参考,严禁商用
2023/10/8 16:09:33 770KB 单片机 电源
1
 光伏电池的输出功率取决于外界环境(温度和光照条件)和负载状况,需采用最大功率点跟踪(MPPT)电路,才能使光伏电池始终输出最大功率,从而充分发挥光伏器件的光电转换效能。
在比较了常用光伏发电系统控制的优缺点后,依据MPPT控制算法的基本工作原理,主电路采用双并联Boost电路,具有电压提升功能,并且能够提高DC-DC环节的额定功率和减小直流母线电压的纹波。
针对传统扰动观察法存在的振荡和误判问题,提出了一种新型的基于双并联Boost电路的改进扰动观察法最大功率跟踪策略。
在Matlab/Simulink下进行了建模与仿真,仿真结果表明,当外界环境发生变化时,系统能快速准确跟踪此变化,避免算法误判现象的发生,通过改变当前的负载阻抗,使之与光伏电池的输出阻抗等值相匹配来满足最大功率输出的要求,使系统始终工作在最大功率点处,并且在最大功率点处具有很好的稳态性能。
最后通过实验验证了该算法的有效性。
1
本系统以TI公司的MSP430F5529单片机为核心,设计了一套高效率的双向DC-DC变换器。
通过闭环控制实现了恒流充电,放电,过充保护以及自动切换工作模式的功能,效率高,精度高。
该设计应用同步整流技术和准方波零电压软开关技术使效率明显提高。
单片机输出带死区的互补PWM来控制MOSFET的导通与关断,驱动电路使用TI公司的UCC27211驱动芯片驱动TI公司的导通电阻极小的CSD19506功率MOSFET,采用自举升压、浮地驱动的方式驱动高侧MOSFET。
采用电阻分压电路检测电压和TI公司的INA282AIDR电流检测芯片检测电流。
并且可以实现按键步进调节电流值,屏幕显示电压电流值的功能。
2023/9/24 11:32:42 606KB DC-DC
1
带隔离的DC-DC变换器基本的DC-DC变换器输出与输入之间存在直接电联系正激变换器通过变压器先将电网电压整流滤波得到初级直流电压,再通过斩波或逆变电路将直流电变换成高频的脉冲或交流电,在经过高频变压器将其变换成合适电压等级的高频交流电,最后将这高频交流电整流滤波获得负载所需的直流电压(注:打开时注意是否有Powergui,如无添加即可,否则无法允许)
2023/9/23 15:41:04 51KB 正激变换器 Simulink仿真模型 MATLAB
1
很多升压芯片及厂家等的详细资料!PT1301是一款最低启动电压可低于1V的小尺寸高效率升压DC/DC转换器,采用自适应电流模式PWM控制环路。
PT1301内部包含误差放大器、斜坡产生器、比较器、功率开关和驱动器。
PT1301能在较宽的负载电流范围内稳定和高效的工作,并且不需要任何外部补偿电路。
PT1301的启动电压可低于1V,因此可满足单节干电池的应用。
PT1301内部含有2A功率开关,在锂电池供电时最大输出电流可达300mA,同时PT1301还提供用于驱动外部功率器件(NMOS或NPN)的驱动端口,以便在应用需要更大负载电流时,扩展输出电流。
500KHz的开关频率可缩小外部元件的尺寸。
输出电压由两个外部电阻设定。
14μA的低静态电流,再加上高效率,可使电池使用更长时间。
2023/9/12 15:41:06 8.99MB 升压芯片
1
便携式电子产品普遍采用锂电池供电。
为保证系统稳定、可靠地工作,通常采用DC—DC开关变换器提供工作电压。
本文对BUCK变换器的原理及应用进行了详细分析,并介绍了晶镁电子的应用产品EML3460B。
1
双向可逆DC/DC方案,MATLAB模型,研究生毕业设计,已经调试成功。
2023/7/27 23:24:18 70KB 双向DC/DC matlab模型 调试成功
1
本文采用buck-boost升降压电路设计,输入DC5-12v,经过buck-boost电路后,可输出DC0-18v可调的电压,可输出2A以上电流,采用PID算法自动调节输出设定的稳定电压,其输出稳压误差波动小于0.01v,纹波小于150mv,转换效率>87%,其中按键可任意设定输出的电压大小。
2023/7/25 0:08:19 13.96MB DC-DC buck升降压 stm32源码 0-18v可调
1
直流DC-DC电路的matlab软件simulink平台仿真,闭环控制,可以很好地实现输出直流电压的稳定以及升降压
2023/6/5 22:02:52 18KB DC-DC
1
共 56 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡