研究了离焦量、脉冲能量、扫描间距、扫描速度和重复频率等激光加工参数对金属表面着色及微纳结构制备的影响机理,诱导制备了氧化膜、类光栅、凹坑和柱状突起4种结构,这些结构会使不锈钢表面产生薄膜干涉、光栅衍射和陷光等现象。
通过Matlab软件在工艺参数与颜色HSB值之间建立了一个单隐含层的反向传播(BP)神经网络,该神经网络的训练均方根误差为0.0078,色相H、饱和度S和亮度B的测试相对误差分别为23%,10.4%和5.6%。
该神经网络在一定程度上揭示了工艺参数与颜色之间的映射关系,使用该神经网络模型可以对激光着色效果作出有效的预测。
2025/1/10 14:27:45 13.14MB 激光技术 微纳结构 BP神经网 不锈钢
1
基于概率神经网络的手写体数字识别,简单实用的例程,适合Bp神经网络的学习者使用
2025/1/4 3:58:42 279KB 数字识别
1
该代码是压缩感知重构算法基追踪(BP),注释很详细,可以直接运行
2025/1/1 4:50:41 2KB 基追踪 BP
1
本程序根据训练好的网络文件ANN.mat预测新的数据文件,得到均方误差,并画出预测数据和原数据的对比图。
2024/12/31 8:14:24 2KB BP神经网络
1
本实验为了解和测试BP神经网络在数字识别上的应用。
1、根据老师提供的测试代码,进行分析。
2、修改网络的架构(修改参数)。
3、根据识别的正确率进行相关网络参数的分析。
2024/12/21 16:15:14 8.71MB BP数字识别 BP神经网络
1
通过MATLAB编程,使用粒子群训练bp神经网络权值和阀值,程序附有详细注释,大家共同学习.
2024/12/17 12:26:43 9KB 粒子群 神经网络
1
matlab实现的BP神经网络,用于手写数字识别,非常实用,可以直接运行看结果
2024/12/16 8:16:41 149KB matlab 神经网络 数字识别
1
这是从网上找到的资源,但是却不能运行,经过修改,加入了些自己的解释,已成功运行,得到结果人脸的识别率高达97.5%。
2024/12/7 14:24:26 7.9MB BP神经网络 matlab 人脸识别
1
识别0-9十个数字,BP神经网络数字识别源代码使用说明第一步:训练网络。
使用训练样本进行训练。
(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。
首先,打开图像(256色);
再次,进行归一化处理,点击“一次性处理”;
最后,点击“R”或者使用菜单找到相应项来进行识别。
识别的结果显示在屏幕上,同时也输出到文件result.txt中。
该系统的识别率一般情况下为90%。
此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。
具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“去噪”-“倾斜校正”-“分割”-“标准化尺寸”-“紧缩重排”。
注意,待识别的图片要与win.dat和whi.dat位于同一目录,这两文件保存训练后网络的权值参数。
具体使用请参照书中说明。
2024/12/5 8:55:53 60KB BP神经网络
1
南阳陶岔作为南水北调中线工程的渠首闸所在地,掌握其水质变化情况、预防污染事件的发生至关重要。
基于环保部门的水质检测数据,选取pH、溶解氧、高锰酸盐指数、氨氮作为研究指标,通过主成份加权分析模型和BP神经网络模型,对陶岔的水质进行了有效的评价和较高精度的预测。
结果表明,陶岔水质总体较好,可达II级以上,评价准确率为81.25%;
预测的最大误差为4.75%,平均误差0.7%,预测精度较高。
1
共 515 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡