使用KNN最近邻算法对文本的情感进行分类和回归预测的数据集
2025/6/13 11:54:32 143KB KNN数据
1
虽然是单输入单输出的GPC程序,但是我作了很多注释,大家可以先学着
2025/6/10 12:14:07 2KB matlb GPC 参数自适应
1
9种预测、处理算法(源代码)c#价值不菲哦!
2025/6/10 2:07:42 418KB 预测 处理
1
介绍小程序新物种起源、行业数据分析、小程序用户画像、场景分析、TOP200小程序榜单分析、小程序七大趋势预测
2025/6/9 19:30:32 10.35MB 微信 小程序 移动互联网 小程序榜单
1
支持向量机matlab工具箱(含资料及gui模式)用于分类和回归预测
2025/6/8 8:55:18 1.66MB 支持向量机 分类 预测模型
1
利用LSTM做预测例子实现易懂,以了解,比较容易入门,。
2025/6/7 16:29:40 73KB lstm神经网络
1
基于matlab灰色模型GM(1,1)预测数据,通,然后对比真实值和预测结果,求出误差,包含残差检验,关联度检验和后验差检验。
2025/6/7 7:32:33 2KB matlab 灰色预测模型
1
注意:三步所用公式的精度必须相同。
通基本思想,四阶Adams显式公式,四阶Adams隐式公式,预测校正公式,四阶Adams显式公式与四阶Runge-Kutta公式的比较,会使用公式,了解多步法的收敛性和稳定...
2025/6/6 12:14:06 718B Adams,四阶预测
1
压缩文件中包含一下列表:1,movielens公开实验数据集(推荐系统研究经常用到~)2,模拟预测评分的python代码(python3.x)希望对大家学习有所帮助。
有问题可以邮箱联系。
2025/6/3 18:01:15 4.53MB code
1
包含所有课后习题答案,非常详尽!《时间序列分析及应用(R语言)(原书第2版)》以易于理解的方式讲述了时间序列模型及其应用,内容包括趋势、平稳时间序列模型、非平稳时间序列模型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差模型、谱分析入门、谱估计和门限模型。
对所有的思想和方法,都用真实数据集和模拟数据集进行了说明。
  《时间序列分析及应用(R语言)(原书第2版)》的一大特点是采用R语言来作图和分析数据,书中的所有图表和实证结果都是用R命令得到的。
作者还为《时间序列分析及应用(R语言)(原书第2版)》制作了大量新增或增强的-函数。
《时间序列分析及应用(R语言)(原书第2版)》的另一特点是包含很多有用的附录.例如,回顾了有关期望、方差、协方差、相关系数等概念.筒述了条件期望的性质以及最小均方误差预测等内容,这些附录有利于关心技术细节的读者深入了解相关内容。
2025/6/3 12:31:42 2.16MB 习题 答案 时间序列 R语言
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡