永磁同步电机谐振抑制仿真,通过加入陷波滤波器,来抑制伺服系统产生的机械谐振,内有抑制前后两个仿真程序,可对比。
2025/2/26 4:19:13 154KB 仿真
1
国外经典信号处理教材,入门、提升必备。
《国外电子与通信教材系列·数字信号处理(第4版)》全面系统地阐述了数字信号处理的基础知识,其中前10章讲述了确定性数字信号处理的知识,包括离散时间信号及系统的介绍、z变换、傅里叶变换、频率分析以及滤波器设计等。
后4章则介绍了随机数字信号处理的知识,主要学习多速率数字信号处理、线性预测、自适应滤波以及功率谱估计。
《国外电子与通信教材系列·数字信号处理(第4版)》内容全面丰富、系统性强、概念清晰、叙述深入浅出,为了帮助读者深刻理解基本理论和分析方法,书中列举了大量的精选例题,同时还给出了许多基于MATLAB的仿真实验。
另外,在各章的最后还附有习题,以帮助读者进一步巩固所学知识。
2025/2/24 6:27:02 39.73MB 国外经典教材
1
(本人小论文代码,通过验证)本文提出一种新的FIR滤波器FPGA实现方法。
讨论了分布式算法原理,并提出了基于分布式算法FIR滤波器的实现方法。
通过改进型分布式算法结构减少硬件资源消耗,用流水线技术提高运算速度,采用分割查找表方法减小存储规模,并在Matlab和Modelsim仿真平台得到验证。
为了节省FPGA逻辑资源、提高系统速度,设计中引入了分布式算法实现有限脉冲响应滤波器(FiniteImpulseResponse,FIR)。
由于FIR滤波器在实现上主要是完成乘累加MAC的功能,采用传统MAC算法设计FIR滤波器将消耗大量硬件资源。
而采用分布式算法(DistributedArithmetic,DA),将MAC运算转化为查找表(Look-Up-Table,LUT)输出,不仅能在硬件规模上得到改善,而且更易通过实现流水线设计来提高速度。
因此本文采用分布式算法设计一个可配置的FIR滤波器,并以31阶的低通FIR滤波器为例说明分布式算法滤波器结构。
1
非下采样Contourlet变换(NonsubsampledContourletTransform,NSCT)是一种多分辨率分析方法,它结合了小波变换的多尺度特性与Contourlet变换的方向敏感性。
NSCT在图像处理和计算机视觉领域有广泛的应用,如图像压缩、图像增强、噪声去除和图像分割等。
这个“NSCT变换的工具箱”提供了实现NSCT算法的软件工具,对于研究和应用NSCT的人来说,是一个非常实用的资源。
非下采样Contourlet变换的核心在于其能够提供多方向、多尺度的图像表示。
与传统的Contourlet变换相比,NSCT不进行下采样操作,这避免了信息损失,保持了图像的原始分辨率。
这种特性使得NSCT在处理高分辨率图像时具有优势,特别是在保留细节信息方面。
NSCT工具箱通常包含以下功能:1.**NSCT变换**:对输入图像执行非下采样Contourlet变换,将图像分解为多个方向和尺度的系数。
2.**逆NSCT变换**:将NSCT系数重构回原始图像,恢复图像的完整信息。
3.**图像压缩**:利用NSCT的系数对图像进行编码,实现高效的图像压缩。
由于NSCT在高频部分有更好的表示能力,因此在压缩过程中可以有效减少冗余信息,提高压缩比。
4.**图像增强**:通过调整NSCT系数,可以对图像进行有针对性的增强,比如增强边缘或抑制噪声。
5.**噪声去除**:利用NSCT的多尺度和方向特性,可以有效地分离噪声和信号,实现图像去噪。
6.**图像分割**:在NSCT域中,图像的特征更加明显,有助于进行图像区域划分和目标检测。
该工具箱可能还包括一些辅助函数,如可视化NSCT系数、性能评估、参数设置等功能,方便用户进行各种实验和分析。
使用这个工具箱,研究人员和工程师可以快速地实现NSCT相关的算法,并在实际项目中进行测试和优化。
在使用NSCT工具箱时,需要注意以下几点:-输入图像的尺寸需要是2的幂,因为大多数NSCT实现依赖于离散小波变换,而DWT通常要求输入尺寸为二进制幂。
-工具箱可能需要用户自行配置或安装依赖库,例如MATLAB的WaveletToolbox或其他支持小波运算的库。
-NSCT变换的计算复杂度相对较高,特别是在处理大尺寸图像时,可能需要较长的计算时间。
-在处理不同类型的图像时,可能需要调整NSCT的参数,如方向滤波器的数量、分解层数等,以获得最佳性能。
"NSCT变换的工具箱"是一个强大的资源,对于那些希望探索非下采样Contourlet变换在图像处理中的潜力的人来说,这是一个必不可少的工具。
通过深入理解和熟练使用这个工具箱,可以进一步发掘NSCT在各种应用中的价值。
2025/2/20 0:32:26 132KB NSCT工具箱
1
已知通带导带、以及纹波系数、衰减增益等参数,利用matlab展示脉冲响应不变法设计数字滤波器的过程,
2025/2/19 18:27:42 1KB DSP matlab实现 数字滤波器
1
基于混合耦合开环谐振器的UHF三阶5位数字可调带通滤波器
2025/2/19 16:02:07 367KB 研究论文
1
labview设计的巴特沃斯滤波器,参数可自由选择。
读取TXT文件数据,显示滤波先后的波形及频谱。
labview代码中结合了matlab代码
2025/2/19 7:46:45 85KB matlab labview
1
STM32是一款基于ARMCortex-M内核的微控制器,广泛应用于嵌入式系统设计中,尤其是在传感器接口和控制领域。
FXAS21002是一款高性能的数字陀螺仪,适用于各种动态应用,如航姿参考系统、运动检测以及游戏控制等。
在使用FXAS21002与STM32进行通信时,由于某些情况下硬件I2C接口可能不适用或已满载,开发者会选择使用软件模拟I2C(也称为bit-banging)来实现通信。
I2C(Inter-IntegratedCircuit)是一种多主控、双向二线制总线协议,用于连接微控制器和其他设备,如传感器、存储器等。
在模拟I2C中,STM32通过GPIO引脚来模拟SCL(时钟)和SDA(数据)信号,从而实现与FXAS21002的通信。
STM32的模拟I2C实现需要编写特定的中断服务程序和状态机,以确保正确地生成I2C时序。
这包括起始条件、停止条件、数据传输和应答/非应答信号的生成。
为了与FXAS21002进行有效通信,你需要设置STM32的GPIO引脚为推挽输出模式,并在适当的时机切换它们的状态以模拟I2C信号。
FXAS21002陀螺仪提供了多种工作模式,包括单轴、双轴和三轴测量,以及不同的数据速率和电源管理模式。
在配置陀螺仪之前,需要通过I2C发送特定的寄存器地址和配置字节。
例如,可以设置陀螺仪的测量范围、低通滤波器配置、数据输出速率等。
在测试程序中,通常会包含初始化序列,用于配置STM32的GPIO和定时器(用于生成I2C时钟),然后是读写FXAS21002寄存器的函数。
读取陀螺仪的数据后,可以通过ADC转换将模拟信号转化为数字值,再进行相应的计算,如角度速度解算。
FXAS21002陀螺仪的数据手册(如PDF文档"FXAS21002【陀螺仪】.pdf")会提供详细的寄存器映射、命令集和操作指南。
开发者需要熟悉这些信息,以便正确地配置和读取陀螺仪数据。
在实际应用中,可能还需要考虑噪声处理、温度补偿、校准算法等高级话题,以提高测量精度和稳定性。
总的来说,STM32模拟I2C与FXAS21002陀螺仪的交互是一个涉及硬件接口、通信协议和传感器数据处理的综合过程。
通过深入理解I2C协议、FXAS21002的特性以及STM32的GPIO和定时器功能,开发者可以构建出可靠且高效的陀螺仪测试程序。
2025/2/14 2:44:28 3.81MB
1
随着人们交通出行的日益频繁,环境噪声已严重影响到出行的质量。
传统的降噪手段主要有隔音、材料吸收等,但受限于布置空间、材料特性和成本等因素,传统方法对高频噪声去除效果较好,但对低频噪声效果不太理想。
因此,主动降噪开始从民航军事领域逐渐走入大众生活。
与传统降噪手段不同,主动噪声控制(ANC)是通过声波干涉相消的原理,利用次级声源发声抵消原有噪声从而实现噪声消除。
主动降噪可以根据环境变化自动调整降噪策略,并且能够选择性的处理特定频段的噪声,从而显著的提升降噪质量。
目前,主动降噪耳机采用的最著名控制算法是由Widrow提出的滤波-XLMS算法(FXLMS)。
该算法特点是在基准信号通道放置一个与次级通道传递特性相同的滤波器来进行LMS算法权修改,以解决引入次级通道带来的系统不稳定性问题。
但基于FXLMS算法设计的降噪耳机,使用过程中存在收敛速度慢,仅对窄带噪声效果好,而对宽带噪声控制效果不理想等问题,因此在很多场景下无法得到较好的降噪效果。
2025/2/9 0:44:32 27.58MB ks adfdf
1
第1章绪论1.1什么是SystemC?1.2为何采用SystemC?1.3设计方法1.4设计能力1.5SystemCRTL1.6本书的组织结构1.7练习第2章SystemC入门2.1基础知识2.2再看一个2*4译码电路示例2.3描述层次关系2.4验证功能2.5练习第3章数据类型3.1值保持器3.2类型概述3.3位类型3.4任意位宽的位类型3.5逻辑类型3.6任意位宽的逻辑类型3.7有符号整型3.8无符号整型3.9任意精度的有符号整型3.10任意精度的无符号整型3.11解析式类型3.12用户定义的数据类型3.13推荐采用的数据类型3.14练习第4章组合逻辑建模4.1SC-MODULE4.1.1文件结构4.2示例4.3读写端口和信号4.4逻辑算符4.5算术算符4.5.1无符号算术4.5.2有符号算术4.6关系算符4.7向量与位区间4.7.1常量下标4.7.2不是常量的下标4.8if语句4.9switch语句4.10循环语句4.11方法4.12结构体类型4.13多个进程的△延迟4.14小结4.15练习第5章同步逻辑建模5.1触发器建模5.2多个进程5.3带异步预置位和清零的触发器5.4带同步预置位和清零的触发器5.5多个时钟与多相位时钟5.6锁存器建模5.6.1if语句5.6.2switch语句5.6.3避免产生锁存器5.7小结5.8练习第6章其他逻辑6.1三态驱动器6.2多个驱动器6.3无关值处理6.4层次结构6.5模块的参数化6.6变量和信号的赋值6.7练习第7章建模示例7.1可参数化的三态输出寄存器7.2存储器模型7.3有限状态机建模7.3.1Moore有限状态机7.3.2Mealy有限状态机7.4通用移位寄存器7.5计数器7.5.1模N计数器7.5.2约翰逊计数器7.5.3格雷码可逆计数器7.6约翰逊译码器7.7阶乘模型7.8练习第8章测试平台8.1编写测试平台8.2仿真控制8.2.1sc_clock8.2.2sc_trace8.2.3sc_start8.2.4sc_stop8.2.5sc_time_stamp8.2.6sc_simulation_time8.2.7sc_cycle和sc_initialize8.2.8sc_time8.3波形8.3.1任意波形8.3.2复杂的重复波形8.3.3派生时钟的生成8.3.4从文件中读取激励8.3.5反应式激励8.4监听行为8.4.1断言正确的行为8.4.2将结果转储至文本文件8.5其他示例8.5.1触发器8.5.2同步输出的多路选择器8.5.3全加器8.5.4周期级仿真8.6sc_main函数内的语句次序8.7记录聚合类型8.8练习第9章系统级建模9.1SC_THREAD型进程9.2动态敏感9.3构造函数的参数9.4其他示例9.4.1最大公因子9.4.2滤波器9.5端口、接口和信道9.6高级论题9.6.1共享数据成员9.6.2定点类型9.6.3模块9.6.4其他方法9.7仿真算法9.8练习附录A运行时环境A.1软件安装A.2编译A.3仿真A.4调试附录BSystemCRTL:可综合的子集B.1SystemC语言要素B.2C++语言要素
2025/2/7 11:47:25 6.27MB system c
1
共 864 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡