干涉测量技术以光的波长为度量单位,具有高精度、高灵敏度、和非接触的特点。
特别是20世纪70年代以来,干涉测量技术与现代激光技术、电子技术和计算机技术相结合,极大地提高了测量精度和重复性。
干涉测量已成为实现光学元件面形及微形貌,光学系统波像差,光学材料折射率、应力双折射等参数高精密检测的主要手段。
超精密干涉测量仪器与系统已成为Zygo、Zeiss、Nikon、4DTechnology、QED等企业的核心业务之一。
2023/12/9 21:13:05 976KB 论文
1
针对光纤光导系统对于太阳跟踪精度、稳定度方面的双重严格要求,设计了光敏阵列太阳定位传感器,并结合太阳轨道解算,实现了太阳光聚焦点的精确定位,并利用塑料光纤进行了聚焦太阳光传输,获得了系统输出光功率谱密度分布曲线与相关光学定量数据。
其中,针对光纤光导系统的对焦过程,研制了高位置分辨率的光敏阵列传感器来感知聚焦光斑确切位置,能够解决初始安装位置误差问题,并通过对太阳轨迹的运行趋势进行预测,自傲控制流程中嵌入同步跟踪模式,实现了精确性与稳定性的兼容。
对光纤输出光谱进行的定量检测结果表明,光纤光导系统输出光功率谱密度与太阳光具有良好的相似度,其色品坐标、显色指数和主波长参数也与太阳光接近,可在特定场合
2023/10/29 12:16:07 693KB 太阳跟踪; 光纤; 聚焦; 传输
1
高光谱解混数据集(Samson),具有156个通道的Matlab格式数据,原始数据有952x952像素。
每个像素记录在156个通道上,覆盖401nm至889nm的波长
光谱分辨率高达3.13nm。
由于原始图像太大,这在计算成本方面非常昂贵,因此使用95×95像素的区域。
它从原始图像中的第(252,332)像素开始。
此数据不会被空白通道或严重噪声通道降级。
具体而言,该图像中有三个目标,分别是“#1土壤”,“#2树”和“#3水”。
2023/10/29 12:43:07 3.42MB 高光谱解混数
1
报道了一个内腔式连续波、单谐振1.9μm和2.4μm双波长激光输出的光参量振荡器(OPO)。
实验采用单管半导体激光二极管(LD)抽运掺钕钒酸钇(NdYVO4)晶体,腔内抽运掺氧化镁的周期性极化铌酸锂(PPMgLN)晶体,得到1.9μm和2.4μm双波长连续激光输出。
在室温下,当LD功率为5.5W时,同时获得了750mW、1.9μm波长的信号光和370mW、2.4μm波长的闲频光输出,光光转换效率分别为13.6%和6.7%,总的转换效率达到了20%以上。
测试5h,功率不稳定性小于1.8%。
另外还对不同长度的PPMgLN晶体进行了阈值和转换效率的特性分析。
通过输出波长稳定性测试发现,对晶体的温度进行更好地控制,可以改善波长漂移的现象。
2023/10/17 21:45:10 1.75MB 非线性光 光参量振 双波长激 连续波
1
提出了一种新型非反转归零(RZ)码的可重构全光逻辑门方案。
该方案基于单个半导体光放大器(SOA)和可调谐光带通滤波器(TOBPF)。
利用SOA的四波混频效应和交叉增益调别(XGM)效应,实现了RZ码信号的多种功能逻辑运算。
在不改变实验装置的情况下,通过调节带通滤波器中心波长和信号光功率,可以在不同逻辑功能之间进行切换。
实验实现了10Gb/s全光信号间的“与”,“非”,“或非”,“同或”,“·B”,“A·B”等基本逻辑运算。
与用连续光作为探测光不同的是,本方案采用了时钟信号作为探测光,这样各个逻辑门的输出均为非反转RZ码,有利于不同逻辑门的进一步组合。
2023/10/10 4:23:40 2.02MB 光通信 全光逻辑 半导体光 四波混频
1
掺钕钨酸钾钆(分子式:Nd:KGd(WO4)2简称(Nd:KGM)晶体是一种性能优良的多波长激光晶体,采用顶部籽晶熔盐法生长。
对晶体中的包裹物和裂纹等缺陷进行了讨论,X射线衍射(XRD)分析了晶体结构,测试了晶体的吸收光谱,并与Nd:YAG的吸收光谱进行了比较。
1
众所周知,光学成像技术具有成像速度快、可实现无损观察等优点,在人类探索和发现未知世界奥秘的活动中一直扮演着重要的角色。
随着现代科学的发展,对微观结构的研究迫切希望能够从分子水平揭示生命过程和材料性能的物理本质,但受限于光的衍射特性,光学成像系统的空间分辨率不可能无限小,存在瑞利\|阿贝物理极限。
传统光学显微镜的空间分辨率最高只能达到波长的1/2,故而对低于200nm的细节信息无能为力。
能否突破这个极限成为当今光学领域公认的一个重大研究课题和挑战。
2023/10/2 6:51:42 170KB
1
在当今光纤通信技术迅猛发展的进程中,既要对光纤性能不断改善,又要对光子器件性能不断改善。
在现阶段,主要是在光波工作的单模光纤,其损耗在1.3μm约为0.37dB/km,在1.55μm约为0.2dB/km,常规单模光纤的色散,在1.3μm近于零,在1.55μm约为17ps/km·nm。
长距离光纤通信系统既要通达最长的中继距离,又要载荷最大的码速容量,因而倾向于利用波长1.55μm。
如能制成色散移位光纤,1.55μm就兼有最低损耗和零色散的波长,长途系统将获得最好效果。
但如只有常规单模光纤,则必须利用单频激光管减少发射频谱,从而减少1.55μm光纤色散的影响。
在长途光纤系统中
2023/9/21 21:45:35 4MB
1
用于光功率的读取,校准,和波长显示等等
2023/9/20 9:02:07 768KB 光功率计
1
提出了一种在半导体-绝缘体-半导体波导中形成磁光布拉格光栅的高度可调太赫兹(THz)滤波器,并通过有限元方法进行了数值模拟。
结果表明,在具有缺陷的布拉格光栅波导的带隙中存在具有高Q值的尖峰,并且可以通过改变施加到器件的横向磁场的强度来极大地改变尖峰的位置。
与没有施加磁场的情况相比,当施加1T磁场时,滤波后的频率(波长)的偏移高达36.1GHz(11.4μm)。
此外,本文提出了一个简单的模型来预测滤波频率,并提出了一种有效的方法来提高滤波器的Q值。
(C)2013年作者。
除另有说明外,所有文章内容均根据知识共享署名3.0未移植许可证进行许可。
[http://dx.doi.org/10.1063/1.4812703]
2023/9/12 14:25:01 1.53MB 研究论文
1
共 98 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡