csv表格中为随机森林分类器的测试数据,属性:DisbursedExisting_EMIIDLoan_Amount_AppliedLoan_Tenure_AppliedMonthly_IncomeVar4Var5AgeEMI_Loan_Submitted_MissingInterest_Rate_MissingLoan_Amount_Submitted_MissingLoan_Tenure_Submitted_MissingProcessing_Fee_MissingDevice_Type_0Device_Type_1Filled_Form_0Filled_Form_1Gender_0Gender_1Var1_0Var1_1Var1_2Var1_3Var1_4Var1_5Var1_6Var1_7Var1_8Var1_9Var1_10Var1_11Var1_12Var1_13Var1_14Var1_15Var1_16Var1_17Var1_18Var2_0Var2_1Var2_2Var2_3Var2_4Var2_5Var2_6Mobile_Verified_0Mobile_Verified_1Source_0Source_1Source_2
2024/10/19 21:09:50 2.35MB rf
1
R语言泰坦尼克号随机森林案例数据分析报告(附代码数据)
2024/10/19 14:23:44 1.21MB 数据分析案例
1
ENVI  ENVI(TheEnvironmentforVisualizingImages)是美国ITTVisualInformationSolutions公司的旗舰产品。
ENVI由遥感领域的科学家采用IDL开发的一套功能强大的遥感图像处理软件;
它是快速、便捷、准确地从地理空间影像中提取信息的首屈一指的软件解决方案,它提供先进的,人性化的使用工具来方便用户读取、准备、探测、分析和共享影像中的信息。
今天,众多的影像分析师和科学家选择ENVI来从地理空间影像中提取信息。
已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋,测绘勘察和城市与区域规划等行业。
  创建于1977年的RSI(现为ITTVisualInformationSolutions公司)已经成功地为其用户提供了超过30年的科学可视化软件服务。
目前ITTVisualInformationSolutions的用户数超过150,000,遍布于80个国家与地区。
从2000年开始连续三年,ENVI被美国国家影像制图局(NIMA)等权威机构组织的Passfind项目遥感影像系统评比当中被评为“最佳的遥感目标识别软件”。
2004年RSI公司并入上市公司ITT公司,并于2006年5月正式成立ITTVisualInformationSolutions公司,ENVI&IDL的发展步伐更加有利与快捷,更多的新功能与算法加进到新版本中。
  强大的影像显示、处理和分析系统  ENVI包含齐全的遥感影像处理功能:常规处理、几何校正、定标、多光谱分析、高光谱分析、雷达分析、地形地貌分析、矢量应用、神经网络分析、区域分析、GPS联接、正射影象图生成、三维图像生成、丰富的可供二次开发调用的函数库、制图、数据输入/输出等功能组成了图像处理软件中非常全面的系统。
  ENVI对于要处理的图像波段数没有限制,可以处理最先进的卫星格式,如Landsat7、IKONOS、SPOT,RADARSAT,NASA,NOAA,EROS和TERRA,并准备接受未来所有传感器的信息。
  强大的多光谱影像处理功能  ENVI能够充分提取图像信息,具备全套完整的遥感影像处理工具,能够进行文件处理、图像增强、掩膜、预处理、图像计算和统计,完整的分类及后处理工具,及图像变换和滤波工具、图像镶嵌、融合等功能。
ENVI遥感影像处理软件具有丰富完备的投影软件包,可支持各种投影类型。
同时,ENVI还创造性地将一些高光谱数据处理方法用于多光谱影像处理,可更有效地进行知识分类、土地利用动态监测。
  更便捷地集成栅格和矢量数据  ENVI包含所有基本的遥感影像处理功能,如:校正、定标、波段运算、分类、对比增强、滤波、变换、边缘检测及制图输出功能,并可以加注汉字。
ENVI具有对遥感影像进行配准和正射校正的功能,可以给影像添加地图投影,并与各种GIS数据套合。
ENVI的矢量工具可以进行屏幕数字化、栅格和矢量叠合,建立新的矢量层、编辑点、线、多边形数据,缓冲区分析,创建并编辑属性并进行相关矢量层的属性查询。
  ENVI的集成雷达分析工具助您快速处理雷达数据  用ENVI完整的集成式雷达分析工具可以快速处理雷达SAR数据,提取CEOS信息并浏览RADARSAT和ERS-1数据。
用天线阵列校正、斜距校正、自适应滤波等功能提高数据的利用率。
纹理分析功能还可以分段分析SAR数据。
ENVI还可以处理极化雷达数据,用户可以从SIR-C和AIRSAR压缩数据中选择极化和工作频率,用户还可以浏览和比较感兴趣区的极化信号,并创建幅度图像和相位图像。
  地形分析工具  ENVI具有三维地形可视分析及动画飞行功能,能按用户制定路径飞行,并能将动画序列输出为MPEG文件格式,便于用户演示成果。
  准备您的影像  ENVI提供了自动预处理工具,可以快速、轻松地预处理影像,以便进行查看浏览或其他分析。
通过ENVI,您可以对影像进行以下处理:  •正射校正  •影像配准  •影像定标  •大气校正  •创建矢量叠加  •确定感兴趣区域(ROIs)  •创建数字高程模型(DEMs)  •影像融合,掩膜和镶嵌  •调整大小,旋转,或数据类型转换  探测影像  ENVI提供了一个直观的用户界面和易用的工具,让您轻松、快速地浏览和探测影像。
您可以使用ENVI完成的工作包括:浏览大型数据集和元数据,对影像进行视觉对比,创建强大的3D场景,创建散点图,探测像素特征等。
  分析影像  ENVI提供了业界领先的图像处理功能,方便您从事各种用途的信息提取。
ENVI提供了一套完整的经科学实践证明的成熟工具来帮助您分析影像。
  数据分析工具  ENVI包括一套综合数据分析工具,通过实践证明的成熟算法快速、便捷、准确地分析图像。
  •创建地理空间统计资料,如自相关系数和协方差  •计算影像统计信息,如平均值、最小/最大值、标准差  •提取线性特征  •合成雷达影像  •主成分计算  •变化检测  •空间特征测量  •地形建模和特征提取  •应用通用或自定义的滤波器  •执行自定义的波段和光谱数学函数  光谱分析工具  光谱分析通过像素在不同波长范围上的反应,来获取有关物质的信息。
ENVI拥有目前最先进的,易于使用的光谱分析工具,能够很容易地进行科学的影像分析。
ENVI的光谱分析工具包括以下功能:  •监督和非监督方法进行影像分类  •使用强大的光谱库识别光谱特征  •检测和识别目标  •识别感兴趣的特征  •对感兴趣物质的分析和制图  •执行像素级和亚像素级的分析  •使用分类后处理工具完善分类结果  •使用植被分析工具计算森林健康度  共享您的信息  ENVI能轻松地整合现有的工作流,让您能在任何环境中与同事们分享地图和报告。
所处理的图像可以输出成常见的矢量格式和栅格影像便于协同和演示。
  自定义您的地理空间影像应用  ENVI建立于一个强大的开发语言—IDL之上。
IDL允许对其特性和功能进行扩展或自定义,以符合用户的具体要求。
这个强大而灵活的平台,可以让您创建批处理、自定义菜单、添加自己的算法和工具,甚至将C++和Java代码集成到您的工具中等。
  自2007年起,与著名的GIS厂商ESRI公司开展全面战略合作,ENVIReaderforArcGIS模块让ArcGIS系列软件全面支持ENVI的数据格式,最新版本ENVI4.5完全支持ArcGIS的Geodatabase等。
2024/10/15 19:08:32 2.72MB envi
1
用于检测机载RGB,高光谱和LIDAR点云中单个树的多传感器基准数据集树木的个体检测是林业和生态学的中心任务。
很少有论文分析在广泛的地理区域内提出的方法。
NeonTreeEvaluation数据集是在国家生态观测网络(NEON)中22个站点的RGB图像上绘制的一组边界框。
每个站点覆盖不同的森林类型(例如)。
该数据集是第一个在多种生态系统中具有一致注解的数据集,用于共同注册的RGB,LiDAR和高光谱图像。
评估图像包含在此仓库中的/evaluation文件夹下。
注释文件(.xml)包含在此仓库中的/annotations/下制作人:BenWeinstein-佛罗里达大学。
如何根据基准进行评估?我们构建了一个R包,以方便评估并与基准评估数据进行交互。
图像是如何注释的?每个可见的树都进行了注释,以创建一个包围垂直对象所有部分的边界框。
倒下的树木没有注释。
2024/10/9 21:49:49 2GB Python
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
理论知识代码请参考https://mp.csdn.net/postedit/88049521
2024/8/28 10:33:32 1.12MB 还款率模型
1
自然语言处理自然语言处理-使用机器学习对IMDB电影评论进行情感分析。
情感分析:这是对通过各种算法定义和分类一段文本所指定的观点或表达的过程的总体定义,以便正面或负面地评估作家或帖子对特定主题的态度。
通常,全球范围内的情绪分析概念也涉及中性意见,但我不会考虑到这一点。
情感分析通常被视为对全球推文的研究。
此外,可以通过人们对电影,产品和公司的看法来进行情感分析。
我将对数据集中的批评进行情绪分析,其中包含对IMDB中电影的批评。
我将尝试显示重要事项的答案,例如我们可以使用哪些分类器,可以达到更高的准确性,可以执行哪种类型的向量转换以及字比对我来说更有用。
要求库版本脾气暴躁的1.18.4熊猫1.0.3Nltk3.4.5斯克莱恩0.23.1方法逻辑回归分类器决策树分类器随机森林分类器K邻居(KNN)分类器TF-IDF矢量化数据集可以从单独下载
2024/8/26 9:32:36 390KB JupyterNotebook
1
TerraScan模块是用来处理数以千万计的激光点数据,较大内存的计算机次能处理超过1000万个点。
软件里提供的工具可以广泛应用于电力输送、洪水分析、高速公路设计、钻孔勘探、森林普查、数字城市建模等不同领域。
该模块可以从文本文件或二进制文件读入激光点数据,包含如下功能:三维方式浏览点数据:自定义点类,如:地表类、植被类、建筑物类、电线类:,激光点分类:根据自定义规则自动分类激光点:如电力铁塔:交互式判别三维月标,应用围栏刑除不要或错误的点:删除不必要的点,减少数据量
2024/8/19 13:08:52 12.34MB terrasolid
1
随机森林降维算法,直接修改输入输出路径,就可以运行的VS项目。
2024/7/29 17:42:18 8.28MB 随机森林 C语言
1
随机森林matlab代码,随机森林matlab代码
1
共 155 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡