首页 人工智能 机器学习     /    邹博机器学习ppt+code(全)

邹博机器学习ppt+code(全)

上传者: liuhaiyang210 | 上传时间:2024/4/25 16:16:51 | 文件大小:169.35MB | 文件类型:zip
邹博机器学习ppt+code(全)
小象学院邹博机器学习课程全部ppt与代码实现,内容详细,代码清楚,机器学习必备。
本软件ID:10690313

文件下载

资源详情

[{"title":"(38个子文件169.35MB)邹博机器学习ppt+code(全)","children":[{"title":"ppt_code","children":[{"title":"13.SVM.pdf <span style='color:#111;'>2.33MB</span>","children":null,"spread":false},{"title":"11.提升.pdf <span style='color:#111;'>1.68MB</span>","children":null,"spread":false},{"title":"18.EM代码.zip <span style='color:#111;'>13.86KB</span>","children":null,"spread":false},{"title":"12.XGBoost代码.zip <span style='color:#111;'>137.58KB</span>","children":null,"spread":false},{"title":"10.RandomForest代码.zip <span style='color:#111;'>32.44MB</span>","children":null,"spread":false},{"title":"22.主题模型实践.pdf <span style='color:#111;'>2.39MB</span>","children":null,"spread":false},{"title":"8.回归实践.pdf <span style='color:#111;'>2.78MB</span>","children":null,"spread":false},{"title":"15.聚类.pdf <span style='color:#111;'>6.59MB</span>","children":null,"spread":false},{"title":"14.SVM实践.pdf <span style='color:#111;'>1.85MB</span>","children":null,"spread":false},{"title":"1.机器学习与数学分析.pdf <span style='color:#111;'>5.92MB</span>","children":null,"spread":false},{"title":"6.7.WordCloud.zip <span style='color:#111;'>1.36KB</span>","children":null,"spread":false},{"title":"17.EM算法.pdf <span style='color:#111;'>1.76MB</span>","children":null,"spread":false},{"title":"16.聚类实践.pdf <span style='color:#111;'>1.98MB</span>","children":null,"spread":false},{"title":"18.EM算法实践.pdf <span style='color:#111;'>1.62MB</span>","children":null,"spread":false},{"title":"5.Python库.pdf <span style='color:#111;'>4.20MB</span>","children":null,"spread":false},{"title":"23.HMM.pdf <span style='color:#111;'>1.71MB</span>","children":null,"spread":false},{"title":"19.贝叶斯网络.pdf <span style='color:#111;'>3.34MB</span>","children":null,"spread":false},{"title":"4.Python基础.pdf <span style='color:#111;'>1.46MB</span>","children":null,"spread":false},{"title":"14.SVM代码.zip <span style='color:#111;'>13.85MB</span>","children":null,"spread":false},{"title":"4.Python代码.zip <span style='color:#111;'>15.36KB</span>","children":null,"spread":false},{"title":"2.概率论与贝叶斯先验.pdf <span style='color:#111;'>3.95MB</span>","children":null,"spread":false},{"title":"9.决策树和随机森林.pdf <span style='color:#111;'>2.69MB</span>","children":null,"spread":false},{"title":"22.LDA_代码.zip <span style='color:#111;'>5.32MB</span>","children":null,"spread":false},{"title":"8.Regression代码.zip <span style='color:#111;'>37.89KB</span>","children":null,"spread":false},{"title":"6.数据清洗和特征选择.pdf <span style='color:#111;'>2.12MB</span>","children":null,"spread":false},{"title":"12.XGBoost实践.pdf <span style='color:#111;'>1.38MB</span>","children":null,"spread":false},{"title":"24.HMM_代码.zip <span style='color:#111;'>32.30MB</span>","children":null,"spread":false},{"title":"7.回归.pdf <span style='color:#111;'>4.20MB</span>","children":null,"spread":false},{"title":"6.Data代码.zip <span style='color:#111;'>13.75MB</span>","children":null,"spread":false},{"title":"5.Package代码.zip <span style='color:#111;'>746.20KB</span>","children":null,"spread":false},{"title":"10.决策树和随机森林实践.pdf <span style='color:#111;'>1.48MB</span>","children":null,"spread":false},{"title":"24.HMM实践.pdf <span style='color:#111;'>2.72MB</span>","children":null,"spread":false},{"title":"20.BayesianNetwork代码.zip <span style='color:#111;'>2.59MB</span>","children":null,"spread":false},{"title":"20.贝叶斯网络实践.pdf <span style='color:#111;'>1.41MB</span>","children":null,"spread":false},{"title":"21.主题模型.pdf <span style='color:#111;'>2.69MB</span>","children":null,"spread":false},{"title":"3.矩阵和线性代数.pdf <span style='color:#111;'>2.25MB</span>","children":null,"spread":false},{"title":"16.Clustering代码.zip <span style='color:#111;'>3.15MB</span>","children":null,"spread":false},{"title":"xgboost-master-(windows上的编译包).zip <span style='color:#111;'>1.13MB</span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • raymonshi:
    不错的资源,感谢!2020-04-22
  • ZUICHIBI1:
    真的很不错的资源,感谢分享!!2020-04-16
  • xxh8787:
    真的很不错的资源,感谢分享2020-04-08
  • Micheal超:
    不错的资源,感谢!2019-07-08
  • 汤圆子不加糖:
    资源不错,比其他的都要积分要的少2018-12-04

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明