2)基于JavaSocketTCP和UDP实现一个简易的网络文件服务程序,包含服务器端FileServer和客户端FileClient;
3)服务器端启动时需传递root目录参数,并校验该目录是否有效;
4)服务器启动后,开启TCP:2021端口,UDP:2020端口,其中,TCP连接负责与用户交互,UDP负责传送文件;
5)客户端启动后,连接指定服务器的TCP2021端口,成功后,服务器端回复信息:“客户端IP地址:客户端端口号>连接成功”;
6)连接成功后,用户可通过客户端命令行执行以下命令:[1]ls服务器返回当前目录文件列表(namesize)[2]cd进入指定目录(需判断目录是否存在,并给出提示)[3]get通过UDP下载指定文件,保存到客户端当前目录下[4]bye断开连接,客户端运行完毕7)服务器端支持多用户并发访问,不用考虑文件过大或UDP传输不可靠的问题。
2023/12/21 2:01:51 13KB socket tcp udp
1
是用C#写的读取USBHID设备的测试软件,输入VID、PIV,查找HID设备是否存在,如果存在,则读取指定的HID设备发来的数据。
软件已测试,可以直接使用。
(不可读取键盘、鼠标),只能读取自定义HID设备,同时可以自定义读取数据时的超时时间
2023/12/9 21:39:45 346KB C# USB HID
1
没有任何人敢保证自己写的程序没有任何BUG,尤其是在商业项目中,程序量越大,复杂度越高,出错的概率越大,尤其是现场环境千差万别,和当初本地电脑测试环境很可能不一样,有很多特殊情况没有考虑到,如果需要保证程序7*24小时运行,则需要想一些办法能够让程序死了能够活过来,在嵌入式linux上,大部分会采用看门狗的形式来处理,程序打开看门狗驱动后,定时喂狗,一旦超过规定的时间,则硬件软复位等。
这种方式相对来说比较可靠,如果需要在普通PC机上运行怎办呢?本篇文章提供一个软件实现守护进程的办法,原理就是udp通信,单独写个守护进程程序,专门负责检测主程序是否存在,不存在则启动。
主程序只需要启动live类监听端口,收到hello就回复ok就行。
为了使得兼容任意程序,特意提炼出来共性,增加了多种设置。
1:可设置检测的程序名称。
2:可设置udp通信端口。
3:可设置超时次数。
4:自动记录已重启次数。
5:自动记录最后一次重启时间。
6:是否需要重新刷新桌面。
7:可重置当前重启次数和最后重启时间。
8:自动隐藏的托盘运行或者后台运行。
9:提供界面设置程序名称已经开启和暂停服务。
2023/12/1 11:49:01 64KB Qt 守护进程
1
bat判断是否存在无线网卡并判断是否使用无线连接网络通过wmicnic命令实现功能。
win7win10均可以用,
2023/11/29 12:23:39 615B bat 判断电脑是否存在无线网卡
1
实验环境:1. WindowsXP操作系统,Server版;
2. 企业版MicrosoftSQLServer2000;
3. VisualC++MFC编程题目要求:假设图书馆的工作人员要处理下列日常工作: 借书:核实读者身份并检查是否存在下述情况: 该读者借书的数额超标;
 该读者所借的书过期未还;
 该读者曾因借书过期被罚款而未交;
如不存在上述情况,则登记借书信息;
 还书:检查所还图书是否损坏或过期,是则登记罚单信息并打印罚单,在交纳罚金前,不允许该读者继续借书。
若图书损坏,注销该图书信息,否则进行还书登记。
 罚款:根据罚单收取罚金,同时取消该读者的借书限制。
 图书信息维护:新书上架、旧书下架及图书信息查询。
 读者信息维护:录入、注销、修改及查询读者信息。
此外,图书馆还应向读者提供下列基本功能: 查询图书信息;
 查询自己的基本信息和借书记录;
 续借;
2023/10/8 11:52:26 2.45MB 数据库课设 图书馆理系统 MFC C++
1
判断一个有向图中是否存在回路,并进行输出(拓扑算法)
2023/10/1 19:29:06 3.39MB C++ 数据结构
1
Snort作为一个轻量级的网络入侵检测系统,在实际中应用可能会有些力不从心,但如果想了解研究IDS的工作原理,仔细研究一下它的源码到是非常不错.首先对snort做一个概括的评论。
从工作原理而言,snort是一个NIDS。
[注:基于网络的入侵检测系统(NIDS)在网络的一点被动地检查原始的网络传输数据。
通过分析检查的数据包,NIDS匹配入侵行为的特征或者从网络活动的角度检测异常行为。
]网络传输数据的采集利用了工具包libpcap。
snort对libpcap采集来的数据进行分析,从而判断是否存在可疑的网络活动。
从检测模式而言,snort基本上是误用检测(misusedetection)。
[注:该方法对已知攻击的特征模式进行匹配,包括利用工作在网卡混杂模式下的嗅探器被动地进行协议分析,以及对一系列数据包解释分析特征。
顺便说一句,另一种检测是异常检测(anomalydetection)。
]具体实现上,仅仅是对数据进行最直接最简单的搜索匹配,并没有涉及更复杂的入侵检测办法。
尽管snort在实现上没有什么高深的检测策略,但是它给我们提供了一个非常优秀的公开源代码的入侵检测系统范例。
我们可以通过对其代码的分析,搞清IDS究竟是如何工作的,并在此基础上添加自己的想法。
snort的编程风格非常优秀,代码阅读起来并不困难,整个程序结构清晰,函数调用关系也不算复杂。
但是,snort的源文件不少,函数总数也很多,所以不太容易讲清楚。
因此,最好把代码完整看一两遍,能更清楚点。
2023/9/19 7:14:15 1.45MB snort
1
假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。
(注:图中不存在顶点到自己的弧)
2023/9/18 5:57:09 5KB 邻接矩阵 有向回路
1
简单沙箱一个带有Node.jsAPI的简单Linux沙箱。
由SYZOJ使用。
先决条件配套您需要在系统中安装build-essentials(g++,make等)和fmt库才能构建C++部分。
所需的最低g++版本是g++-8。
建议使用支持C++17文件系统的较新版本的clang++。
安装它们的方式(在Ubuntu18.04中):aptinstallbuild-essentialclang++-9libfmt-dev核心您需要在内核中启用内存交换帐户(在Debian8中默认为禁用)。
您可以通过检查是否存在/sys/fs/cgroup/memory/memory.memsw.usage_in_bytes来验证这/sys/fs/cgroup/memory/memory.memsw.usage_in_bytes如果该文件不存在,则可能
2023/9/14 12:31:22 41KB C++
1
《10000个科学难题》序  前言  奥特(Vaught)猜想与拓扑奥特猜想  超紧基数典型内模型问题  递归可枚举度中的格嵌入问题和双量词理论可判定性问题  高层有限波雷尔(Borel)等价关系中的两个问题  极小塔问题  r=rω?及s=sω?  连续统势确定问题  奇异基数问题  萨克斯(Sacks)关于波斯特(Post)问题的度不变解问题和马丁(Martin)猜想  图灵(Turing)等价问题  图灵(Turing)度的自同构问题  是否存在一个稳定的一阶完全理论,它有大于一的有穷多个可数模型  Cherlin-zilber猜想  带指数函数的实数理论的可判定性问题  Shelalh唯一性猜想  微分封闭域上的平凡强极小集  3-Calabi-Yau代数的分类  阿廷(Artin)群的Grobner-Shirshov基  布如意(Broue)交换亏群猜想  布朗(Brown)问题  凯莱(Cayley)图和相关的问题  福克斯(Foulkes)猜想  戈伦斯坦(Gorenstein)对称猜想  卡普兰斯基(Kaplansky)第六猜想  中山(Nakayama)猜想和广义中山(Nakayama)猜想  拉姆拉斯(Ramras)问题  Smashing子范畴上的公开问题  巴斯-奎伦(Bass-Quillen)猜想  非半单Brauer代数的表示理论  非交换曲面的分类  关于码交换等价于前缀码的猜测  关于半群上一类重要同余的一个系列推广模式  关于有限码具有有限完备化的判定问题  关于正则半群的两个嵌入问题  广义倾斜模中的两个猜想  考克斯特群的胞腔  满足正规子群极小条件的可解群的Fitting子群是否是幂零的?  模代数smash积的半素性  球极函数的提升Pieri型公式  稳定等价猜想  一些代数的Grobner-Shirshov基  由导出范畴建立量子群和典范基  有限维数猜想  ABC猜测  巴斯(Bass)猜想和索尔(Soule)猜想  Lichtenbaum猜想  里德一所罗门(Reed-Solomon)码的译码问题  沙努尔(Schanuel)猜想  [1]哥德巴赫(Goldbach)猜想  关于不同模覆盖系的厄尔多斯(Erdos)问题  关于倒数和发散序列的厄尔多斯图兰(Erdos-Turan)猜想  关于奇数阶阿贝尔(Abel)群的Snevily猜想  关于有限域上代数曲线点数的Drinfeld-Vladt界  朗兰兹(Langlands)纲领  类数1实二次域的高斯猜想  黎曼(Riemann)zeta函数在奇正整数点处值的超越性  黎曼(Riemann)猜想  欧拉常数的超越性  椭圆曲线的BSD猜想  希尔伯特第九问题:高斯二次互反律如何推广  希尔伯特第十二问题:构作数域的最大阿贝尔扩域  岩泽(Iwasawa)理论的主猜想  ……  编后记
2023/8/19 14:21:04 9.17MB 科学难题,数学,猜想
1
共 43 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡