偏振编码器的稳定性是影响偏振编码通信的关键因素之一。
本文采用时变矢量对基于铌酸锂(LN)相位调制的偏振编码器的稳定性进行了深入研究。
实验表明,LN的初步相关消耗主态与初步相关相移主态基本一致,说明LN的偏振相关损耗不会影响折射率态的稳定性。
实验中观察到阳离子态旋转具有“惯性”:当电压从0V增加到某个定值后,利率态会继续变化预算(反之亦然),大约在30分钟左右才达到稳定。
该现象对于低速调制将带来不利影响;
对于高速调制,平均功率的变化也将引起甲醛。
1
算法是建立在离线传播模型下,不考虑多径效应,反射,折射等对信号强度有损耗的情况,算法中选用了NN,KNN,WKNN等几种常用的指纹定位算法。
2024/7/30 11:25:27 3KB matlab
1
unity光线折射演示demo,主要是为了理解我的那篇光线折射的推导
2024/6/25 20:46:30 4.18MB unity 光线 折射
1
我们首次向我们报告关于通过6.0MeV碳注入和6.0x10(14)离子/cm(2)剂量的Er3+/Vb(3+)共掺杂硅酸盐玻璃制造平面波导的报道)。
导光性能通过He-Ne光束的棱镜耦合和端面耦合方法进行测量。
平面波导的折射率分布是通过反射率计算方法重建的,该方法显示了典型的“增强阱+光学势垒”分布。
微发光和拉曼研究表明,通过将碳注入波导中,整体特征不会显着劣化,从而展示了集成有源光子器件的可能应用。
由ElsevierBV发布
2024/6/24 14:08:46 421KB Waveguide; Ion implantation; Fluorescence
1
很多偏理论的书籍最好是英文版的,中国的书都是抄来抄去的,要看就看国外的经典书,ElectromagneticWaveTheory是电磁学的理论经典教材,绝对值得看,本书详细介绍了基于麦克斯韦方程组的电磁波的完整理论,主要内容包括电磁波理论中的基本定律与方程,传输线理论,电磁波的反向、透射、折射、绕射和散射,波导和谐振腔,辐射和天线理论基础,以及在狭义相对论指导下的、从洛伦兹协变的角度理解的麦克斯韦电磁波理论。
2024/4/22 18:20:19 17.78MB Electromagne MicroWave
1
数字全息显微术(DHM)是一种使用光学干涉图案来记录三维光场的技术,用于成像,传感和显微技术应用。
“无透镜”串联DHM是最简单的布置,不需要透镜,没有镜子,通常仅需要光源,样品和诸如CCD或CMOS像素阵列之类的数字成像器芯片。
尽管如此简单,但无透镜直列DHM能够在宽阔的视场上生成高分辨率图像,并允许研究人员记录光场的幅度和相位,并以数字方式重建形状,厚度,3D位置,速度,泡Kong或小颗粒的折射率和其他参数。
因此,将在线DHM与微流控技术,光流测速,低成本成像,即时诊断,单细胞跟踪,细胞流式细胞仪,计数,分选和芯片实验室相结合有很多潜在的机会技术。
2024/3/22 12:17:58 1.9MB
1
大气计算软件,大气传输,大气折射等计算,可以详尽的计算
2024/2/13 19:26:47 13.69MB 大气计算软件
1
用脉冲激光沉积技术制备了钛酸锶钡(Ba0.5Sr0.5TiO3)薄膜。
用X射线光电子能谱和原子力显微镜分别分析了薄膜的化学组分和表面形貌。
在交流信号为50mV和100kHz时测量了薄膜的介电系数和介电损耗随外加电场的变化关系,得出最高的介电可调率达到45%。
利用单光束纵向Z扫描的方法研究了薄膜的非线性光学性质,得到非线性折射率为5.04×10-6cm2/kW,非线性吸收系数为3.59×10-6m/W,测量所用光源的波长为532nm,脉宽为55ps,表明Ba0.5Sr0.5TiO3薄膜有较快的非线性光学响应。
2024/2/2 14:45:37 1.28MB 薄膜光学 脉冲激光 介电系数
1
光波在大气中传输时,因大气湍流的影响导致大气折射率起伏产生光束漂移、闪烁等一系列湍流效应,严重影响了光电系统的正常使用。
由于测量方法的局限想要获得较大时空范围内大气光学湍流参数不切实际,因此能够事先预报大气光学湍流具有重要意义。
2024/1/24 7:29:28 651KB 论文
1
计算光子晶体光纤的有效折射率程序,可以得到有效折射率随波长变化图(Calculatetheeffectiverefractiveindexofthephotoniccrystalfiberprogram,youcangetchangeintheeffectiverefractiveindexwithwavelength)
2024/1/17 10:17:41 675KB matlab
1
共 75 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡