引入辅助任务信息有助于立体匹配模型理解相关知识,但也会增加模型训练的复杂度。
为解决模型训练对额外标签数据的依赖问题,提出了一种利用双目图像的自相关性进行多任务学习的立体匹配算法。
该算法在多层级渐进细化过程中引入了边缘和特征一致性信息,并采用循环迭代的方式更新视差图。
根据双目图像中视差的局部平滑性和左右特征一致性构建了损失函数,在不依赖额外标签数据的情况下就可以引导模型学习边缘和特征一致性信息。
提出了一种尺度注意的空间金字塔池化,使模型能够根据局部图像特征来确定不同区域中不同尺度特征的重要性。
实验结果表明:辅助任务的引入提高了视差图精度,为视差图的可信区域提供了重要依据,在无监督学习中可用于确定单视角可见区域;在KITTI2015测试集上,所提算法的精度和运行效率均具有一定的竞争力。
1
图像特征提取方法的综述,有助于图像特征提取
2024/8/26 16:58:53 239KB 特征提取方法
1
本文档包含两个关于小波变换在图像边缘特征提取的程序,绝对实用!
2024/8/24 20:37:12 14KB 小波变换 边缘特征 MATLAB
1
我自己实现的灰度共生矩阵提取结肠癌图像特征,并利用计算机辅助诊断的方法SVM分类Matlab代码。
2024/8/24 17:46:09 2KB 灰度共生矩阵 SVM 结肠癌
1
针对遥感数字图像处理的三大内容(质量改善、特征提取与选择、信息提取)及其处理流程,本书分三部分(遥感数字图像处理基础、遥感数字图像质量改善、遥感数字图像特征选择与信息提取)由浅入深系统地介绍了遥感数字图像处理的原理与方法,其中不仅包括常用的经典方法,也包括近几年新提出的方法。
本书特别强调从图像含义的角度来理解遥感数字图像处理各种算法的物理意义,因此本书尽量避免数学公式的罗列与推导,而是借助生活中一些通俗易懂的案例来引导读者理解各种算法。
2024/8/23 3:08:54 59.45MB 遥感 数字图像处理
1
Mikolajczyk图像库,主要用于图像特征点提取,特征点匹配
2024/7/15 1:55:32 52.79MB 图像处理库
1
基于C语言实现的SIFT算法,实现SIFT图像特征提取,以及基于SIFT的图像拼接。
能直接运行
1
基于MATLAB的树叶图像特征分类识别,图像分析处理分割特征提取分类识别等亲测可用,谢谢支持。
2024/5/25 21:56:33 1.67MB 程序
1
提出了一种利用多个图像特征的曝光过度区域检测学习算法。
该算法利用像素的亮度和颜色特征以及光的新特征-色度和边界邻域来构造特征向量。
采用L2正则化的一次逻辑回归方法获得最优分类器mod-e1。
实验结果表明,与直接强度阈值法和其他基于亮度和色彩特征的方法相比,该算法在区域连通性方面能更好地检测出过度曝光区域。
2024/5/20 18:55:43 1.15MB over—exposed region detection; L2
1
基于卷积神经网络的真实图像质量评价方法,唐敏,刘勇,现有盲图像质量评价方法主要采用手动提取图像特征和传统的机器学习组合的方法,如支持向量机(SVM)。
传统无参考图像质量评价方法通�
2024/5/11 0:17:44 514KB 信息处理技术
1
共 89 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡