使用C#编写的VisionPro脚本,支持找边,找圆结果的传递和显示,VisionPro8.2
2025/9/5 6:24:56 651KB Vision
1
针对近红外InGaAs焦平面(FPA)调制传递函数(MTF)的测量要求,设计了一种全反射式Offner光学系统,由两块共轴的球面反射镜构成,11成像,F数为4。
在焦平面工作波长1.7μm下对光学系统进行优化,设计结果显示,在8mm×30mm的宽视场(FOV)内任一点,空间频率20lp/mm处(对应光敏元尺寸25μm×25μm的焦平面的Nyquist频率),光学系统的MTF在1.7\mm达到0.82,接近衍射限。
Zygo激光干涉仪在0.6328μm波长下的测量结果显示,系统的波前差均方根(RMS)值在0.6328\mm约为1/20λ,20lp/mm处MTF在0.6328\mm达到0.93。
将测量得到的波前差数据代入CODEV中计算,结果表明波长1.7μm下系统在8mm×30mm的视场内任一点,空间频率20lp/mm处的MTF实验值仍高于0.8,满足要求。
2025/8/28 10:37:02 2.85MB 近红外 焦平面调 全反光学 Offner
1
VB调用VC生成的dll里面包含有VB和VC如何指针传递数组传递
2025/8/20 13:13:30 293KB dll
1
Filtersolution是由NuhertzTechnologies,LLC公司开发的一款滤波器设计和分析软件,能够提供无源、有源和数字滤波设计类型,可给出所设计滤波器的传递函数、零极点以及幅频、相频、群时延等特性。
通过调整参数,可以获得实际工程需要的滤波器。
另外,数字滤波器还可以生成C语言程序。
是一款非常实用的工具。
2025/8/20 4:50:56 1.69MB filter solutions
1
该项目是通过。
可用脚本在项目目录中,可以运行:npmstart在开发模式下运行应用程序。
打开在浏览器中查看。
如果进行编辑,页面将重新加载。
您还将在控制台中看到任何棉绒错误。
npmtest在交互式监视模式下启动测试运行程序。
有关更多信息,请参见关于的部分。
npmrunbuild构建生产到应用程序build文件夹。
它在生产模式下正确捆绑了React,并优化了构建以获得最佳性能。
最小化构建,文件名包含哈希。
您的应用已准备好进行部署!有关更多信息,请参见有关的部分。
npmruneject注意:这是单向操作。
eject,您将无法返回!如果您对构建工具和配置选择不满意,则可以随时eject。
此命令将从项目中删除单个构建依赖项。
而是将所有配置文件和传递依赖项(Webpack,Babel,ESLint等)直接复制到您的项目中,以
2025/8/19 10:50:09 187KB HTML
1
本文来自于简书,本文主要介绍人工神经网络入门知识的总结,希望对您的学习有所帮助。
我们从下面四点认识人工神经网络(ANN:ArtificialNeutralNetwork):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。
1.神经元:我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。
人工神经元建模过程下面分别讲述:生物神经元的组成包括细胞体、树突、轴突、突触。
树突可以看作输入端,接收从其他细胞传递过来的电信号;
轴突可以看作输出端,传递电荷给其他细胞;
突触可以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。
细胞体内有膜电位,从外界传递过来的电
2025/8/14 15:28:45 672KB 人工神经网络(ANN)简述
1
介绍了一种应用于光纤时频传递秒脉冲信号(1PPS)调制的马赫-曾德尔调制器(MZM)偏置点反馈控制系统。
本系统将电光调制器的偏置点设置在传输曲线的最小值点(Null)和正斜率正交点(Quad+)之间的线性区域,利用光电二极管(PIN)探测输出1PPS信号的低电平电压的波动来检测偏置点的漂移。
对测量到的电压信号进行数字处理后通过控制偏置点反馈系统来稳定调制器的偏置点。
对反馈控制理论进行了原理推导,并与基于微扰理论的商用偏置点稳定系统进行了对比实验。
实验证明该系统可以避免微扰信号对1PPS传输稳定性的影响,传递性能优于商用偏置点稳定系统。
实验结果表明,1PPS传递时延波动的峰峰值为174ps,均方根值(RMS)为18ps,在平均时间为104s时,1PPS的时间阿伦方差(TDEV)下降到1.7ps。
1
java调用shell向DataX传递参数,where条件,包含特殊字符。
java调用shell向DataX传递参数,where条件,包含特殊字符
1KB DataX
1
doc格式,60多页吧,几百道题吧,都有答案吧,看好在下!部分:1.求下面函数的返回值(微软)intfunc(x){intcountx=0;while(x){countx++;x=x&(x-1);}returncountx;}假定x=9999。
答案:8思路:将x转化为2进制,看含有的1的个数。
2.什么是“引用”?申明和使用“引用”要注意哪些问题?答:引用就是某个目标变量的“别名”(alias),对应用的操作与对变量直接操作效果完全相同。
申明一个引用的时候,切记要对其进行初始化。
引用声明完毕后,相当于目标变量名有两个名称,即该目标原名称和引用名,不能再把该引用名作为其他变量名的别名。
声明一个引用,不是新定义了一个变量,它只表示该引用名是目标变量名的一个别名,它本身不是一种数据类型,因此引用本身不占存储单元,系统也不给引用分配存储单元。
不能建立数组的引用。
3.将“引用”作为函数参数有哪些特点?(1)传递引用给函数与传递指针的效果是一样的。
这时,被调函数的形参就成为原来主调函数中的实参变量或对象的一个别名来使用,所以在被调函数中对形参变量的操作就是对其相应的目标对象(在主调函数中)的操作。
(2)使用引用传递函数的参数,在内存中并没有产生实参的副本,它是直接对实参操作;
而使用一般变量传递函数的参数,当发生函数调用时,需要给形参分配存储单元,形参变量是实参变量的副本;
如果传递的是对象,还将调用拷贝构造函数。
因此,当参数传递的数据较大时,用引用比用一般变量传递参数的效率和所占空间都好。
(3)使用指针作为函数的参数虽然也能达到与使用引用的效果,但是,在被调函数中同样要给形参分配存储单元,且需要重复使用"*指针变量名"的形式进行运算,这很容易产生错误且程序的阅读性较差;
另一方面,在主调函数的调用点处,必须用变量的地址作为实参。
而引用更容易使用,更清晰。
4.在什么时候需要使用“常引用”? 如果既要利用引用提高程序的效率,又要保护传递给函数的数据不在函数中被改变,就应使用常引用。
常引用声明方式:const类型标识符&引用名=目标变量名;
例1inta;constint&ra=a;ra=1;//错误a=1;//正确例2stringfoo();voidbar(string&s);那么下面的表达式将是非法的:bar(foo());bar("helloworld");原因在于foo()和"helloworld"串都会产生一个临时对象,而在C++中,这些临时对象都是const类型的。
因此上面的表达式就是试图将一个const类型的对象转换为非const类型,这是非法的。
引用型参数应该在能被定义为const的情况下,尽量定义为const。
5.将“引用”作为函数返回值类型的格式、好处和需要遵守的规则?格式:类型标识符&函数名(形参列表及类型说明){//函数体}好处:在内存中不产生被返回值的副本;
(注意:正是因为这点原因,所以返回一个局部变量的引用是不可取的。
因为随着该局部变量生存期的结束,相应的引用也会失效,产生runtimeerror!注意事项:(1)不能返回局部变量的引用。
这条可以参照EffectiveC++[1]的Item31。
主要原因是局部变量会在函数返回后被销毁,因此被返回的引用就成为了"无所指"的引用,程序会进入未知状态。
(2)不能返回函数内部new分配的内存的引用。
这条可以参照EffectiveC++[1]的Item31。
虽然不存在局部变量的被动销毁问题,可对于这种情况(返回函数内部new分配内存的引用),又面临其它尴尬局面。
例如,被函数返回的引用只是作为一个临时变量出现,而没有被赋予一个实际的变量,那么这个引用所指向的空间(由new分配)就无法释放,造成memoryleak。
(3)可以返回类成员的引用,但最好是const。
这条原则可以参照EffectiveC++[1]的Item30。
主要原因是当对象的属性是与某种业务规则(businessrule)相关联的时候,其赋值常常与某些其它属性或者对象的状态有关,因此有必要将赋值操作封装在一个业务规则当中。
如果其它对象可以获得该属性的非常量引用(或指针),那么对该属性的单纯赋值就
2025/8/9 4:02:35 45KB C C++ 算法 经典
1
实现qt内嵌ie与js交互,主要实现两种方式,一种js主动调用,一种是qt传递idispatch给js,然后通过该对象调用
2025/8/8 8:26:03 62KB qaxwidget
1
共 624 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡