数据压缩的原理简介:图像、电影、音乐,数据不仅仅限制于文本,绝大多数数据会有冗余,例如在文本文件中,很多字符出现的频率远高于其他字符,图片编码中也存在大片的相同区域,电影、声音等类似信号的文件都含有大量重复模式。
将这些重复的区域进行压缩处理,整个文件所占的存储空间将会大大减小。
2024/12/7 13:41:56 86KB
1
梳状滤波器是很重要的一种滤波器,通过设置零点将一些频率分量滤除掉。
该代码就是梳状滤波器的设计代码。
2024/12/6 14:28:45 428B 梳状滤波器
1
STM32F103ZET6,ADC1采集,通过定时器3触发中断,在中断程序里J将采集数据进行快速傅里叶变换,得到频率,幅值,实部,虚部并将处理的数据传送到串口进行打印
2024/12/5 10:46:57 4.54MB DMA STM32F103 FFT TIM3
1
基于Labview的虚拟示波器设计1.技术指标 能实现2个波形的分别输入及比较,可以简单的控制示波器输出的波形,例如可以对波形进行幅度和频率的调制,可以控制波形上下移动以及对波形的峰峰值进行测量。
2.设计方案本设计采用LabVIEW软件进行制作,LabVIEW程序又称虚拟仪器,即VI,其外观和操作类似于真实的物理仪器(如示波器和万用表)。
LabVIEW拥有一整套工具用于采集、分析、显示和存储数据,以及解决用户编写代码过程中可能出现的问题。
LabVIEW提供众多输入控件和显示控件用于创建用户界面,即前面板。
输入控件指旋钮、按钮、转盘等输入装置。
显示控件指图形、指示灯等输出显示装置。
创建用户界面后,可添加各种VI和结构作为代码,从而控制前面板对象。
代码在程序框图中编写。
LabVIEW不仅可与数据采集、视觉、运动控制设备等硬件进行通信,还可与GPIB、PXI、VXI、RS232以及RS485等仪器通信。
在Labview软件中可以找到制作虚拟示波器的各种元件,通过控制信号的幅度和频率可以改变示波器中信号的幅值和频率,加上中继器和开关可以控制2个通道波形的显示以
2024/12/2 6:33:56 272KB labview
1
对于2FSK,调制就是把输入数字序列变成适合于信道传输的正弦波。
产生正弦波有差分迭代法、泰勒级数法、查表法等多种方法。
查表法虽然要占用较多的存储空间,但速度快,实时性好,特别适用于通信载波的生成。
但是查表法对于后期解调来说稍微困难,因此我们用计算法(差分迭代)产生不同频率正弦波。
本书旨在DSP设计2FSK调制解调器,C语言,包含CCS下的编译调试
2024/12/1 0:03:40 966KB 2FSK
1
STM32F103单片机高级定时器TIM8从PC6,PC7,PC8,PC9,同时生成4路PWM.库函数版。
代码详细系的注释,大家拿到手可直接使用,我用的zet6,其他容量单片机,也可以正常移植。
1
频率计设计1设计要求一、基本部分:1.1被测信号波形为三角波,正弦波,矩形波。
1.2被测信号幅度≥100mv。
1.3被测信号频率位40Hz~1MHz1.4用4位数码管显示字符。
1.5测量误差≤0.5%。
二、发择部分:
2024/11/30 22:35:13 2.61MB 频率计 设计
1
OFDM定时及频率同步说明文档,希望对大家的学习及工作有帮助。
2024/11/30 22:22:00 197KB OFDM 定时 频率同步
1
国外经典信号处理教材,入门、提升必备。
《国外电子与通信教材系列·数字信号处理(第4版)》全面系统地阐述了数字信号处理的基础知识,其中前10章讲述了确定性数字信号处理的知识,包括离散时间信号及系统的介绍、z变换、傅里叶变换、频率分析以及滤波器设计等。
后4章则介绍了随机数字信号处理的知识,主要学习多速率数字信号处理、线性预测、自适应滤波以及功率谱估计。
《国外电子与通信教材系列·数字信号处理(第4版)》内容全面丰富、系统性强、概念清晰、叙述深入浅出,为了帮助读者深刻理解基本理论和分析方法,书中列举了大量的精选例题,同时还给出了许多基于MATLAB的仿真实验。
另外,在各章的最后还附有习题,以帮助读者进一步巩固所学知识。
2024/11/29 15:13:36 39.73MB 国外经典教材
1
挺好的,本系统是采用555构成的多协振荡器74LS90芯片组合做成的数子时钟系统。
其中用555构成的多协振荡器产生震荡频率,再用74LS90芯片组合成分频电路对震荡频率进行分频,然后对选用74LS92和74LS90分别作为时计数器和分、秒计数器,
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡