通过对Zernike算法的研究提高了边缘检测精度,可使边缘检测精度达0.1个像素
2024/4/26 13:42:53 4.6MB 图像检测 工件尺寸测量
1
基于单片机的高精度AD转换器.pdf基于单片机的高精度AD转换器.pdf
1
自主式CCD星敏感器(或称为星跟踪器)自身带有微处理器,是一种智能化的姿态敏感器。
由于其指向精度高、无姿态累计误差以及具有快速故障恢复能力,已成为航空、航天以及军事领域备受关注的研究对象。
利用星敏感器确定卫星姿态就是对出现在星敏感器视场中的恒星进行识别,通过星光矢量确定星图拍摄瞬间星敏感器视轴在惯性坐标系中的指向,进而确定航天器姿态。
本文以卫星姿态自主确定技术为研究背景,对基于CCD星敏感器的星图识别技术进行了研究。
论文对基于星敏感器确定卫星姿态的技术流程进行了叙述,但重点是对星图识别算法的设计与实现进行了研究。
基于星敏感器确定卫星姿态主要存在以下问题:如何构建分布合理并且能够满足导航需要的导航星表、如何设计适应性强、精度高的星图识别算法以及采用何种滤波算法解算卫星姿态等。
本文就其中部分内容进行了研究,并进行了实验验证
1
基于FPGA的高精度数字式移相正弦波信号发生器设计、电子技术,开发板制作交流
2024/4/16 18:13:47 170KB
1
基于决策的单模目标跟踪方法的关键是及时而稳健的目标机动检测,充分利用目标多普勒观测量能够有效提高机动检测性能。
提出一种集成多普勒观测的目标机动检测算法,利用基于马氏距离的预测寻优方法,克服了多普勒观测噪声水平较高时估计式无解的情况,提高了加速度估计精度;基于奈曼皮尔逊准则设计机动检测器,避免了因目标机动检测的滞后性带来的门限漂移。
仿真实验表明,算法提高了加速度估计的精度和稳健性,显著降低了平均检测延迟,有效提高了机动检测性能。
2024/4/16 16:39:38 1.58MB 研究论文
1
《计算机代数系统的数学原理》主要介绍了计算机代数系统的数学理论、经典结果和著名算法。
全书包含高精度运算、数论、数学常数、精确线性代数、多项式、方程求解、符号极限、符号求和、符号积分、微分方程符号解等10个部分,涵盖了构建计算机代数系统的最基础也是最重要的内容。
书中的许多内容是第一次被系统地整理后出现在中文文献中,并在一些领域体现了本方向的最新进展。
2024/4/15 12:37:47 2.94MB 计算机代数系统的数学原理
1
为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。
本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q分量、超G分量、a*分量;
随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;
最后,对像素进行聚类划分,从而得到棉花叶片分割结果。
按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。
试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。
分割结果表明,本研究算法能够对3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。
2024/4/14 16:22:47 2.56MB pdf
1
对基于正交散焦光栅的M2因子测量系统进行了理论研究,该测量系统可以同时测量光束束腰附近9个不同位置处的光强分布,并由二阶矩方法计算束宽,经双曲线拟合得到被测光束的M2因子。
为了优化系统设计和提高系统测量精度,根据高斯光束的薄透镜变换关系,针对基模高斯光束和多模高斯光束,分析被测光束束腰宽度、束腰位置和模式分布对测量系统测量精度的影响。
结果表明,基模高斯光束或者多模高斯光束所对应基模高斯光束的束腰宽度在设计范围内时,系统可在较大的测量距离内具有较高的测量精度。
该研究为实际系统的设计和测量提供了理论指导。
1
哈工大丁振良老师的仪器精度理论教材,十分具有实用价值
2024/4/13 3:56:40 7.74MB 仪器精度理论
1
OpenCV、MATLAB亲测可用。
用于相机参数标定,使用打印机按实际尺寸打印即可。
如果需要非常高的精度可以到网上买专用标定板标定。
注意,一般helcon的标定板是用圆点的所以这个不适用。
2024/4/11 16:55:14 26KB 相机标定
1
共 964 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡