安信可LoRa系列模块(Ra-01/Ra-02)由安信可科技设计开发,该系列模块的射频芯片SX1278主要采用LoRa™远程调制解调器,用于超长距离扩频通信,抗干扰性强,能够最大限度降低电流消耗。
借助SEMTECH的LoRa™专利调制技术,SX1278具有超过-148dBm的高灵敏度,+20dBm的功率输出,传输距离远,可靠性高。
同时,相对传统调制技术,LoRa™调制技术在抗阻塞和选择方面也具有明显优势,处理了传统设计方案无法同时兼顾距离、抗干扰和功耗的问题。
2021/2/3 2:10:36 8.66MB lora ai ra-01 ra-02
1
超远极限传输、超强灵敏组网的最新一代MimoMesh智能天线自组网电台
2018/3/11 20:43:18 3.45MB mimo
1
题目:基于单片机的智能插座设计与实现基本要求1.定时器功能:可实现智能插座在设定时间内的定时开启和关断;
2.遥控断电和通电:通过无线遥控器可以实现远距离随时遥控断电和遥控通电;
3.减少待机功耗:在用电器处于待机形态下插座可以自动断电,减少待机功耗;
4.短路保护:当短路或者功率过大时,自恢复熔断器断开,正常时闭合供电。
用AT89S52,PCB板,USB供电
2015/2/5 1:29:46 162.13MB 单片机 毕设 源程序
1
移远(quectel)NB-IOTBC26全网通模块原理图SCH和PCB封装,兼容BC28与GSM/GPRS模块M26,内含AltiumDesigner、Cadence、PADS三种格式原理图SCH和PCB封装,已实际使用过
2018/11/26 4:20:14 47KB NB-IOT 移远BC26 SCH&PCB;封装
1
包含移远MC20模块的产品规格书、产品引见、硬件设计手册、参考设计手册、AGPS应用指导、AT指令手册
2019/6/13 16:01:17 12.57MB mc20 原理图 模块规格书 硬件设计
1
移远BC系列模组固件升级工具,注意一定要直接放在盘符目录下面,不然可能会导致升级失败等问题,固件可以本人另行下载
2018/11/13 16:34:54 26.57MB 移远BC 固件升级 NBIOT
1
AhMyth_Win64.exe,可以将软件跟远控很不错的结合在一同
2021/1/19 22:53:13 54.77MB AhMyth
1
本科教材PDF等等·262·工程力学·262·由图14.8(a)中的曲线2查得,当bσ=600MPa时,K1.66σ=,由表14-1查得0.88σε=。
由于轴表面经切削加工,由表14-2,使用插入法,求得β=0.925。
把以上求得的maxσ、Kσ、σε、β等代入公式(14.12),求出A-A处的工作安全因数为1max2502.61.6646.90.880.925nσKσσσσεβ=−==××规定的安全因数为n=2。
所以,轴在该截面处满足强度条件式(14.11)。
14.5持久极限曲线在非对称循环的情况下,用rσ表示持久极限。
rσ的脚标r代表循环特征。
例如脉动循环r=0,其持久极限记为0σ。
与测定对称循环持久极限1σ-的方法相似,在给定的循环特征r下进行疲劳试验,求得相应的S−N曲线。
图14.13即为这种曲线的示意图。
利用S−N曲线便可确定不同r值的持久极限rσ。
图14.13选取以平均应力mσ为横轴,应力幅aσ为纵轴的坐标系如图14.14所示。
对任一个应力循环,由它的mσ和aσ便可在坐标系中确定一个对应的P点。
由公式(14.4)知,若把一点的纵、横坐标相加,就是该点所代表的应力循环的最大应力,即ammaxσ+σ=σ(a)由原点到P点作射线OP,其斜率为amaxminmmaxmin1tan1rrσσσασσσ−−===++(b)可见循环特征r相同的所有应力循环都在同一射线上。
离原点越远,纵、横坐标之和越大,应力循环的maxσ也越大。
显然,只需maxσ不超过同一r下的持久极限rσ,就不会出现疲劳失效。
故在每一条由原点出发的射线上,都有一个由持久极限确定的临界点(如OP线上的P′)。
对于对称循环,r=−1,mσ=0,amaxσ=σ,表明与对称循环对应的点都在纵轴上。
由bσ在横轴上确定静载的临界点B。
脉动循环r=0,由式(b)知tanα=1,故与脉动循环对应的点都在α=45的射线上,与其持久极限bσ相应的临界点为C。
总之,对任一循环特征r,都可确定与其持久极限相应的临界点。
将这些点连成曲线即为持久极限曲线,如图14.14中的曲线AP′CB。
2022/10/19 13:52:36 14.93MB 工程力学
1
通过成形InGaN/GaN纳米棒来修正远场辐射图
2017/8/11 11:56:27 640KB 研究论文
1
游戏外挂攻防艺术【高清】【完整目录】【随书源码】=================================第1篇游戏和外挂初识篇第1章认识游戏和外挂1.1游戏安全现状1.2什么是外挂1.3内存挂与游戏的关系1.4游戏的3个核心概念1.4.1游戏资源的加/解密1.4.2游戏协议之发包模型1.4.3游戏内存对象规划1.5外挂的设计思路1.6反外挂的思路1.7本章小结第2篇外挂技术篇第2章五花八门的注入技术2.1注册表注入2.2远线程注入2.3依赖可信进程注入2.4APC注入2.5消息钩子注入2.6导入表注入2.7劫持进程创建注入2.8LSP劫持注入2.8.1编写LSP2.8.2安装LSP2.9输入法注入2.10ComRes注入第3章浅谈无模块化3.1LDR_MODULE隐藏3.2抹去PE“指纹”3.3本章小结第4章安全的交互通道4.1消息钩子4.2替代游戏消息处理过程4.3GetKeyState、GetAsyncKeyState和GetKeyBoardState4.4进程间通信4.5本章小结第5章未授权的Call5.1CallStack检测5.2隐藏Call5.2.1Call自定义函数头5.2.2构建假栈帧5.3定位Call5.3.1虚函数差异调用定位Call5.3.2send()函数回溯定位Call5.4本章小结第6章Hook大全6.1Hook技术简介6.2IATHook在全屏加速中的应用6.3巧妙的虚表Hook6.3.1虚表的内存规划6.3.2C++中的RTTI6.3.3Hook虚表6.4DetoursHook6.4.1Detours简介6.4.2DetoursHook的3个关键概念6.4.3DetoursHook的核心接口6.4.4DetoursHook引擎6.5高级Hook6.5.1S.E.H简介6.5.2V.E.H简介6.5.3硬件断点6.5.4S.E.HHook6.5.5V.E.HHook6.5.6检测V.E.HHook6.6本章小结第7章应用层防护7.1静态保护7.2动态保护7.2.1反dump7.2.2内存访问异常Hook7.3本章小结第3篇游戏保护方案探索篇第8章探索游戏保护方案8.1分析工具介绍8.1.1GameSpider8.1.2KernelDetective8.2定位保护模块8.2.1定位ring0保护模块8.2.2定位ring3保护模块8.2.3定位自加载模块8.3分析保护方案8.3.1ring3保护方案8.3.2ring0保护方案8.4本章小结第4篇射击游戏安全专题第9章射击游戏安全9.1自动开枪9.1.1易语言简介9.1.2易语言版自动开枪外挂9.2反后坐力9.2.1平衡Y轴法9.2.2AutoIt脚本法9.3DirectXHack9.3.1DirectX简介9.3.2用Direct3D绘制图形9.3.3D3D9的Hack点9.3.4D3D9Hook9.4本章小结第5篇外挂检测技术篇第10章外挂的检测方法10.1代码篡改检测10.2未授权调用检测10.3数据篡改检测10.3.1吸怪挂分析10.3.2线程转移和消息分流10.4本章小结附录A声明附录B中国计算机安全相关法律及规定
2015/8/3 2:36:15 171.28MB 游戏外挂 外挂攻防 高清 目录
1
共 315 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡