此插件主要用于大型3D场景的DAE单体文件导出,无需手动一个个选择。
进入3Dmax后直接打开脚本运行所有即可,操作简单,max版本均兼容,自己写的代码,可用。
2024/11/21 13:23:16 699B 3dmax dae格式
1
根据提供的文件信息,我们可以将这份“Flux培训资料中文”中的关键知识点整理如下:###Flux培训资料概述####一、模型简介及几何建模本章节主要介绍了如何在Flux软件中创建基本的几何模型,并对不同类型的案例进行了简要说明。
1.**几何建模**:-**仿真目标**:文档中提到了三种不同的仿真场景,分别是静磁场场仿真(Case1)、电流参数化仿真(Case2)和几何参数化仿真(Case3)。
-**几何参数**:为了进行仿真,首先需要定义模型的几何参数。
这些参数用于定义模型的基本形状和尺寸。
-**几何建模步骤**:-**创建对称面**:通过双击symmetry选项来创建对称面,这一步对于简化模型和提高计算效率非常重要。
-**创建几何参数**:通过双击geometricparameter选项,可以定义几何参数,例如长度、宽度等。
-**创建坐标系**:为了准确地定位模型中的各个元素,需要创建合适的坐标系。
这可以通过双击坐标系选项实现。
-**平移变换矢量的创建**:通过双击transformation选项,可以定义平移变换矢量,这对于调整模型的位置非常有用。
-**建立点、线、面、体**:这是几何建模的基础,通过定义点、线、面、体来构建模型的具体形状。
####二、网格剖分这一部分重点讲解了如何将模型分割成更小的单元,即网格剖分,这对于模拟计算至关重要。
-**网格剖分**:在进行电磁场仿真之前,需要将模型划分为更小的网格,以便于软件进行精确的计算。
网格的质量直接影响到仿真的准确性和计算时间。
####三、物理属性本节介绍了如何设定材料的物理属性,这对于模拟结果的准确性至关重要。
-**物理属性设置**:为模型的不同部分指定正确的物理属性,比如磁导率、电导率等,这对于准确模拟电磁行为非常重要。
####四、求解这一环节涉及如何设置求解器参数和执行仿真计算。
-**求解设置**:在这一阶段,需要选择适当的求解器算法,并设定求解参数,如精度要求、迭代次数等。
-**执行仿真**:完成所有准备工作后,启动仿真计算过程,获得模拟结果。
####五、后处理这部分是关于如何分析和可视化仿真结果。
1.**Case1静磁场场仿真**:-这部分针对静磁场场仿真进行了详细的分析和结果展示,可以帮助用户理解静态电磁场的行为。
2.**Case2电流参数化仿真**:-在这个案例中,通过对电流进行参数化处理,研究电流变化对电磁场的影响。
3.**Case3几何参数化仿真**:-这个案例着重探讨了几何参数变化对电磁行为的影响,这对于优化设计具有重要意义。
####六、Flux在国内的技术支持文档还提到了Flux软件在中国的技术支持情况,这对于中国用户来说是非常实用的信息。
这份“Flux培训资料中文”不仅涵盖了Flux软件的基础使用方法,还包括了从几何建模到后处理的完整流程,非常适合初学者入门学习。
通过这份培训资料,学员能够掌握Flux软件的操作技巧,并学会如何利用该软件进行各种电磁场仿真。
2024/11/21 9:24:26 5.67MB Flux
1
作场景漫游、虚拟现实的可以参考一下。
主要内容是模拟操作者从近距离和远距离观察一栋房屋,按住鼠标左键不断滑动,即可实现对建筑物的漫游。
环境VC6.0,使用C/C++语言实现。
2024/11/18 20:39:15 2.81MB VC++
1
IBMCloudant是一种基于jsondocument类型的非关系型(NoSQL)数据库,其具有在云端高效处理高负载、高并发读写的强大特性。
从另一个角度来说,Cloudant还是一个开源的、分布式的数据库,它基于Apache的CouchDB项目以及开源的BigCouch项目。
比如将其应用于一个大型的数据量快速增长的web或mobile项目之中,无疑将是一个非常明智的选择。
因此,从业务场景的角度
2024/11/16 9:15:32 708KB 深入浅出NoSQL数据库Cloudant
1
免费完整开源:基于MIT协议,源代码完全开源,无商业限制,MS开发团队承诺将MCMS内容系统永久完整开源;
标签化建站:不需要专业的后台开发技能,只要使用系统提供的标签,就能轻松建设网站;
html静态化:系统支持全站静态化;
跨终端:站点同时支持PC与移动端访问,同时会自动根据访问的终端切换到对应的界面,数据由系统统一管理;
海量模版:铭飞通过MStore(MS商城)分享更多免费、精美的企业网站模版,降低建站成本;
丰富插件:为了让MCms适应更多的业务场景,在MStore用户可以下载对应的插件,如:站群插件、微信插件、商城插件等;
每月更新:铭飞团队承诺每月28日为系统升级日,分享更多好用
2024/11/16 2:55:12 17.07MB MCMS
1
这是一个简单的画图小程序,在C#中使用Graphics类创建场景,在窗口中绘制线条,类似Windows的画图工具,有兴趣还可以添加图形的画法
2024/11/14 15:06:57 73KB C# 画图
1
可录取unity3d运行中场景内容
2024/11/14 14:43:03 63.2MB unity3d
1
使用Unity制作一个简单的人物和怪物互相攻击的游戏demo。
要求将人物放在场景中合适的位置,创建主摄像机,在合适的角度跟随人物移动,实现使用鼠标控制镜头围绕人物转动。
实现人物点地移动(4m/s),要求不能穿墙,不能掉到地下,点击非可达区域时不进行移动。
人物跑到怪物面前,点击怪物开始攻击(多个技能轮播),要求右手执有武器长剑,技能播放完毕之前不可以移动。
怪物会自动反击主角,怪物受攻击播放受伤动画,攻击时播放攻击动画。
人物逃跑时候怪物会追击(2m/s移动要求同主角),在追上主角距离2m之内,会继续攻击主角。
使用NGUI简单做一个界面,选中怪物时显示怪物血量(进度条)。
2024/11/13 5:07:50 51.34MB Unity C# Unity3D
1
加密算法在信息技术领域中起着至关重要的作用,用于保护数据的安全性和隐私性。
SHA(SecureHashAlgorithm)是一种广泛使用的散列函数,它将任意长度的数据转换为固定长度的摘要值。
SHA512是SHA家族中的一员,提供更强大的安全性能,尤其适合大数据量的处理。
本文将深入探讨SHA512加密算法的原理、C++实现以及其在实际应用中的重要性。
SHA512算法基于密码学中的消息摘要思想,通过一系列复杂的数学运算(如位操作、异或、循环左移等),将输入数据转化为一个512位的二进制数字,通常以16进制形式表示,即64个字符。
这个过程是不可逆的,意味着无法从摘要值推导出原始数据,因此被广泛应用于数据完整性验证和密码存储。
在C++中实现SHA512算法,首先需要理解其基本步骤:1.**初始化**:设置一组初始哈希值(也称为中间结果)。
2.**预处理**:在输入数据前添加特殊位和填充,确保数据长度是512位的倍数。
3.**主循环**:将处理后的数据分成512位块,对每个块进行多次迭代计算,每次迭代包括四个步骤:扩展、混合、压缩和更新中间结果。
4.**结束**:将最后一个中间结果转换为16进制字符串,即为SHA512的摘要值。
C++代码实现时,可以使用位操作、数组和循环来完成这些计算。
为了简化,可以使用`#include`中的`uint64_t`类型表示64位整数,因为SHA512处理的是64位的数据块。
同时,可以利用`#include`中的`memcpy`和`memset`函数来处理内存操作。
此外,`#include`和`#include`库可用于将二进制数据转换成16进制字符串。
以下是一个简化的C++SHA512实现框架:```cpp#include#include#include#include#include//定义常量和初始化哈希值conststd::arraykInitialHashValues{...};std::arrayhashes=kInitialHashValues;//主循环函数voidProcessBlock(constuint8_t*data){//扩展、混合、压缩和更新中间结果}//输入数据的处理voidPreprocess(conststd::string&input){//添加填充和特殊位}//将摘要转换为16进制字符串std::stringDigestToHex(){//转换并返回16进制字符串}//使用示例std::stringmessage="Hello,World!";Preprocess(message);constuint8_t*data=reinterpret_cast(message.c_str());size_tdataSize=message.size();while(dataSize>0){if(dataSize>=128){ProcessBlock(data);dataSize-=128;data+=128;}else{//处理剩余数据}}std::stringresult=DigestToHex();```这个框架只是一个起点,实际的SHA512实现需要填充完整的扩展、混合和压缩步骤,以及处理边界条件。
此外,为了提高效率,可能还需要使用SIMD(SingleInstructionMultipleData)指令集或其他优化技术。
SHA512算法在多种场景下具有广泛的应用,如:-**文件校验**:通过计算文件的SHA512摘要,可以验证文件在传输或存储过程中是否被篡改。
-**密码存储**:在存储用户密码时,不应直接保存明文,而是保存SHA512加密后的哈希值。
当用户输入密码时,同样计算其SHA512值并与存储的哈希值比较,不匹配则表明密码错误。
-**数字签名**:在公钥加密体系中,SHA512可以与非对称加密算法结合,生成数字签名,确保数据的完整性和发送者的身份验证。
了解并掌握SHA512加密算法及其C++实现,对于信息安全专业人员来说至关重要,它不仅有助于提升系统的安全性,也有助于应对不断发展的网络安全威胁。
通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
2024/11/12 20:26:46 2.14MB 加密算法
1
基础场景:两个用户使用PC终端在线聊天过程中,发起点对点文件传输文件发送方需从本地文件系统选择可传输的数据文件文件接收方有权在一开始选择接收文件或取消;
若选择接收,须指明文件保存位置在文件传输过程中,系统应能提供每个文件当前的传输状态,文件的收发方均能在传输开始后完毕前取消文件的传输若文件传输过程中产生了非人为取消引起的传输失败,应告知收发双方对于中途传输失败或被取消的文件,其再次传递时应能支持断点续传每个文件传输完毕后,给予收发方提示
2024/11/10 16:46:51 1.77MB SIP msrp
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡