极限学习机matlab程序。
程序里包括样本训练、测试、精度、隐层神经元个数、激活函数选取。
2024/12/1 2:16:10 53KB 程序
1
本书是在笔者在浙江万里学院H3C网络技术学院和华为网络技术学院从事多年H3CNE认证、H3CSE认证、HCDA认证教学培训的基础上完成的。
本书以构建一个综合性的局域网和广域网为基础,综合运用了多种交换和路由技术,涵盖了基础网络和高级网络技术。
本书的主要特点是实例教学,以动手训练为主。
所实现的配置全部在H3C和华为路由器和交换机设备平台上运行。
适合于那些希望以构建综合性的网络拓扑、提高实战水平的读者。
2024/11/29 4:08:58 65.01MB 园区网络 方案设计 系统集成
1
数据集在IT行业中,特别是在机器学习和计算机视觉领域,扮演着至关重要的角色。
"各种病虫害的高清数据集"是一个专门针对农业病虫害识别的图像数据集,它包含了五个不同类别的高清图片,这些图片是jpg格式,非常适合用于训练和测试深度学习模型。
我们来详细了解一下数据集的概念。
数据集是模型训练的基础,它包含了一系列有标记的样本,这些样本用于训练算法学习特定任务的特征和模式。
在这个案例中,数据集中的每个样本都是一张病虫害的高清图片,可能包括农作物上的疾病症状或害虫。
这些图片经过分类,分别属于五个不同的类别,这意味着模型将需要学习区分这五种不同的病虫害类型。
在计算机视觉任务中,高清图片通常能提供更多的细节,有助于模型更准确地学习和理解图像特征。
jpg格式是一种常见的图像存储格式,它采用了有损压缩算法,能在保持图像质量的同时,减少文件大小,适合在网络传输和存储中使用。
对于这样的数据集,可以进行以下几种机器学习任务:1.图像分类:训练一个模型,输入一张病虫害图片,输出图片所属的类别。
例如,输入一张叶片有斑点的图片,模型应该能够判断出这是哪种病害。
2.目标检测:除了识别类别,还需要确定病虫害在图片中的位置,这要求模型能够定位并框出病虫害的具体区域。
3.实例分割:进一步细化目标检测,不仅指出病虫害的位置,还能精确到每个个体,这对于计算病虫害数量或者分析病害程度非常有用。
4.异常检测:训练模型识别健康的农作物图像,当出现病虫害时,模型会发出警报,帮助农民尽早发现并处理问题。
构建这样的模型通常涉及以下几个步骤:1.数据预处理:包括图片的缩放、归一化、增强(如翻转、旋转)等,目的是提高模型的泛化能力。
2.模型选择:可以使用经典的卷积神经网络(CNN),如AlexNet、VGG、ResNet等,或者预训练模型如ImageNet上的模型,再进行微调。
3.训练与验证:通过交叉验证确保模型不会过拟合,并调整超参数以优化性能。
4.测试与评估:在独立的测试集上评估模型的性能,常用的指标有准确率、召回率、F1分数等。
5.部署与应用:将训练好的模型部署到实际系统中,如智能手机APP或农田监控系统,实时识别并报告病虫害情况。
"各种病虫害的高清数据集"为开发精准的农业智能识别系统提供了基础,通过AI技术可以帮助农业实现智能化、精准化管理,提升农作物的产量和质量,对现代农业发展具有重要意义。
2024/11/22 10:52:17 840.11MB 数据集
1
python利用pandas实现用决策树算法预测NBA获胜球队,2013-2014赛季的成绩作为训练集
2024/11/22 0:56:57 76KB PYTHON pandas
1
大学生《会计学原理》课后练习题-每章训练题(含答案)
2024/11/21 19:01:12 3.14MB 会议管理
1
本语料库由复旦大学李荣陆提供。
训练和测试两个语料各分为20个相同类别。
训练语料和测试语料基本按照1:1的比例来划分。
使用时尽量注明来源(复旦大学计算机信息与技术系国际数据库中心自然语言处理小组)。
2024/11/18 15:51:57 109.68MB 文本分类
1
包含需求分析、项目计划安排、概要设计、详细设计、数据库设计、项目技术准备、系统功能设计、项目的测试、实战演练9个课题,图文并茂,好学易懂。
是Java项目实战训练的优秀教程。
1
一个基于LIBSVM的股票价格预测程序,采用随机森林算法对样本进行训练和预测,使用的编程语言为JAVA。
2024/11/16 2:12:13 6.22MB 股票价格预测 LIBSVM
1
万万没想到:用理工科思维理解世界.pdf;
完整版,274页,13MB;
训练你的思维模式
2024/11/15 4:42:57 13.04MB 理工科思维 理解世界
1
代理模式+实际应用训练
2024/11/14 15:24:06 5KB 动态代理 java hooks 反射
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡