文章主要是用粒子群算法与离散傅里叶变换相结合的优化方法处理要优化的问题—优化储能系统(ESS)的尺寸和容量,减少成本以及温室气体的排放。
采用离散傅里叶变换(DFT)将所需的平衡功率分解成各种时变周期分量,用于计算混合储能系统所需的最大功率。
使用粒子群优化(PSO)算法执行成本分析以优化各种类型储能系统的尺寸和容量。
仿真结果揭示了ESS的最优分配效率。
2023/2/21 9:57:02 1.38MB 船舶 电力系统 储能系统 优化
1
气动执行机构的机理模型有助于研究其动态特性和控制算法,而对机理模型的验证是应用该模型的前提和基础。
该文在获得气动执行机构的气室热力学模型、摩擦力模型和阀杆动力学模型的基础上,设计了详尽的实验方案并搭建了实验平台。
最后通过对比分析实验结果和Simulink仿真结果,证明了该机理模型能够准确的描述气动执行机构的动态功能。
1
该程序的主要目的是给出鲁棒H无穷控制器的设计过程,并通过绘图抽象反映仿真结果,具有较高的参考价值。
2023/2/14 1:34:44 47KB 鲁棒 H-infinity
1
本文首先建立平流层飞艇的六自在度非线性模型,根据历史气象数据建立急流风场模型,采用遗传算法对飞艇放飞轨迹寻优,对比无风和在急流风场中两种情境下飞艇放飞轨迹、放飞时间及所需能耗的变化,从而分析急流风对平流层飞艇放飞过程的影响。
系统仿真结果表明,急流风在平流层飞艇放飞过程中有着显著的影响,仿真结果可以为实际放飞计划提供参考。
1
基于SABER的DCDC反激变换器仿真SABER是美国Analogy公司开发、现由Synopsys公司经营的系统仿真软件,被誉为全球最先进的系统仿真软件,也是唯一的多技术、多领域的系统仿真产品,现已成为混合信号、混合技术设计和验证工具的业界标准,可用于电子、电力电子、机电一体化、机械、光电、光学、控制等不同类型系统构成的混合系统仿真,这也是SABER的最大特点。
SABER作为混合仿真系统,可以兼容模拟、数字、控制量的混合仿真,便于在不同层面上分析和解决问题,其他仿真软件不具备这样的功能。
 SABER仿真软件是当今世界上功能强大的电力电子仿真软件之一,我们从以下几个方面对SABER仿真软件进行介绍: 1) 原理图输入和仿真。
SABER Sketch是SABER的原理图输入工具,通过它可以直接进入SABER仿真引擎。
在SABER Sketch中,用户能够创建自己的原理图,启动SABER完成各种仿真(偏置点分析、DC分析、AC分析、瞬态分析、温度分析、参数分析、傅立叶分析、蒙特卡诺分析、噪声分析、应力分析、失真分析等),可以直接在原理图上查看仿真结果,SABER Sketch及其仿真功能可以帮助用户完成混合信号、混合技术(电气、液压等)系统的仿真分析。
SABER Sketch中的原理图可以输出成多种标准图形格式,用于报告、设计审阅或创建文档。
集成度高:从调用画图程序到仿真模拟,可以在一个环境中完成,不用四处切换工作环境。
 2) 数据可视化和分析。
Cosmos Scope是SABER的波形查看和仿真结果分析工具,它的测量工具有50多种标准的测量功能,可以对波形进行准确的定量分析。
它的专利工具——波形计算器,可以对波形进行多种数学操作。
Cosmos Scope中的图形也可以输出成多种标准图形格式用于文档。
Saber提供了SaberScope和DesignProbe来查看仿真结果,而SaberScope功能更加强大。
 3) 模块化和层次化:可将一部分电路块创建成一个符号表示,用于层次设计,并可对子电路和整体电路仿真模拟。
 4) 模拟行为模型:对电路在实际应用中的可能遇到的情况,如温度变化及各部件参数漂移等,进行仿真模拟。
 5) 模型库。
SABER拥有市场上最大的电气、混合信号、混合技术模型库,它具有很大的通用模型库和较为精确的具体型号的器件模型,其元件模型库中有4700多种带具体型号的器件模型,500多种通用模型,能够满足航空、汽车和电源设计的需求。
SABER模型库向用户提供了不同层次的模型,支持自上而下或自下而上的系统仿真方法,这些模型采用最新的硬件描述语言(HDL),最大限度的保证了模型的准确性,支持模型共享。
 6) 建模。
不同类型的设计需要不同类型的模型,SABER提供了完整的建模功能,可以满足各种仿真与分析的需求。
其建模语言主要有MAST、VHDL-AMS、Fortran,建模工具包括State-AMS、5维的图表建模工具TLU,SABER可以对SPICE、SIMULINK模型进行模型转换,同时SABER还拥有强大的参数提取工具,可以通过协同仿真实现模型复用。
SABER的混合信号、混合技术设计和验证能力已经得到了业界的验证,功能强大的原理图输入、仿真分析、模型库、建模语言、建模功能再加上先进的规划布线设计使SABER成为业界工程师的首选。
SABER的架构和独一无二的模型交换能力为市场上提供了最为强大的仿真工具,能够处理所有的仿真需求。
 与PSPICE相比,SABER是功能更为强大的仿真软件,它可以仿真电力电子元件、电路和系统,不仅具有PSPICE的功能,而且具有更丰富的元件库和更精致的仿真描述能力,还能结合数学控制方程模块工作。
SABER还可以仿真电力传动、机械、热力、流体等其他运动过程。
SABER的仿真真实性很好,从仿真的电路到实际的电路实现,期间参数基本不用修改。
与PSPICE相仿,SABER的数据处理量亦相当庞大。
SABER应用的主要困难是操作较为复杂,软件价格高昂,比较适合于大企业应用,而中小企业一般是通过委托研究、开发来利用该软件。
2023/2/8 3:07:18 61KB saber 反激
1
该文引见了一种小型飞机飞行模拟器飞行仿真模型的开发过程。
建立了非线性的动力学方程和起落架模型,采用插值方法生成气动系数,利用SimulinkTM中航空工具箱构建环境模型,使用StateflowTM表述逻辑关系。
气动数据来源于DATCOM。
较为完整的模型,使得仿真整个飞行的过程,滑跑,起飞,巡航,降落得以实现。
进行了飞机起飞和降落阶段的仿真,结果表明模型可用。
非线性的数学模型能够比较真实地反映飞机的实际特性。
仿真模型开发的成功为模拟器的建立打下了基础。
2023/1/28 18:29:32 441KB 飞行仿真模型
1
分布式电源的引入对原有配电网络中的潮流分布、短路电流、电能质量和系统保护等带来一系列的问题。
为了克服分布式电源对配电网保护带来较大影响,应用电力系统中公共连接点的戴维南方程,并结合统计学思想对系统短路电流进行估算,其估算结果作为系统继电保护定值的整定依据,从而达到自顺应保护的目的。
仿真结果表明了所提出算法的有效性。
1
针对混沌系统的参数辨识是一个多维参数的优化问题,提出了基于混沌策略形态转移算法的混沌系统参数辨识方法。
该方法是在初始化时以混沌序列初始化种群,在搜索过程中引入混沌变异机制,利用遍历性对形态进行变异操作,避免了过早收敛,提高了全局搜索能力。
利用该算法辨识Lorenz混沌系统参数,并与基本形态转移算法和粒子群算法进行比较。
仿真结果表明,在有无噪声干扰的情况下,该算法比粒子群算法和基本形态转移算法具有更好的辨识精度,且比粒子群算法具有更好的收敛速度。
证明了该算法的有效性和抗干扰性,对混沌理论的发展有重要的意义。
1
可以运行,二级倒立摆的建模、线性化S函数的PID控制以及非线性化S函数的PID控制,(1)根据牛顿运动定律或者拉格朗日方程,建立直线型二级倒立摆的非线性运动模型,给出系统运动的形态方程。
(2)对非线性运动模型进行线性化,针对线性化模型采用极点配置或者PID控制的方法,设计直线型二级倒立摆的控制方案,给出控制律设计方法;
(3)分别针对有扰动和无扰动两种情况下,采用Matlab软件进行仿真,编写倒立摆非线性运动模型的S函数,结合设计的控制方案,给出Matlab仿真的框图,并给出仿真结果。
1
资源里含有mc1496集成电路的内部结构图,以及核心元件的连接仿真结果理想
2018/3/20 4:09:40 45KB multisim mc1496 调幅电路
1
共 324 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡