2001年全国大学生电子设计竞赛一等奖_基于DDS技术的任意波形发生器2001年全国大学生电子设计竞赛一等奖_基于DDS技术的任意波形发生器
1
倾情奉献,完全可以照抄。
实验一运算器实验实验二移位运算实验实验三存储器读写和总线控制实验附加实验总线控制实验实验五微程序设计实验一、实验目的:1. 掌握运算器的组成及工作原理;
2. 了解4位函数发生器74LS181的组合功能,熟悉运算器执行算术操作和逻辑操作的具体实现过程;
3. 验证带进位控制的74LS181的功能。
二、预习要求:1. 复习本次实验所用的各种数字集成电路的性能及工作原理;
2. 预习实验步骤,了解实验中要求的注意之处。
三、实验设备:EL-JY-II型计算机组成原理实验系统一套,排线若干。
.........八、行为结果及分析:实验数据记录如下表:DR1 DR2 S3S2S1S0 M=0(算术运算) M=1 Cn=1无进位 Cn=0有进位 (逻辑运算) 理论值 实验值 理论值 实验值 理论值 实验值04H 06H 0000 F=(04) F=(04) F=(05) F=(05) F=(05) F=(05)04H 06H 0001 F=(0A) F=(0A) F=(0B) F=(0B) F=(FC) F=(FC)04H 06H 0010 F=(FD) F=(FD) F=(FE) F=(FE) F=(00) F=(00)04H 06H 0011 F=(FF) F=(FF) F=(00) F=(00) F=(FD) F=(FD)04H 06H 0100 F=(04) F=(04) F=(05) F=(05) F=(F9) F=(F9)04H 06H 0101 F=(0A) F=(0A) F=(0B) F=(0B) F=(F9) F=(F9)04H 06H 0110 F=(FD) F=(FD) F=(FE) F=(FE) F=(FD) F=(FD)04H 06H 0111 F=(FF) F=(FF) F=(00) F=(00) F=(00) F=(00)经过比较可知实验值与理论值完全一致。
此次实验的线路图的连接不是很难,关键是要搞清楚运算器的原理,不能只是盲目的去连线。
在线路连接完成后,就按照要求置数,然后查看结果,与理论值比较。
如果没有错误就说明前面的实验中没有出现问题;
否则,就要重新对照原理图检查实验,找出错误,重新验证读数。
九、设计心得、体会:这次课程设计我获益良多,平时我们能见到的都是计算机的外部结构,在计算机组成原理的学习中,逐步对计算机的内部结构有了一些了解,但始终都停留在理论阶段。
而在本次实验,让我们自己设计8位运算器并验证验证运算器功能发生器(74LS181)的组合功能,让我对运算器的内部结构有了更深的了解,并且对计算机组成原理也有了更深层次的理解,同时这次课程设计还锻炼了我的实验动手能力,也培养了我的认真负责的科学态度。
这次课程设计要求连线仔细认真,不能有半点错误,在刚做这个实验的时候,我就由于粗心没有正确的设置手动开关SW-B和ALU-B,导致存入的数据不正确。
 我在连线过程中也自己总结出了避免出错的方法,就是在接线图上将已经连接好的部分作上记号,连接完后再检查一遍各个分区的条数是否和实验接线图上的一样,如果一样就可以进行下面的实验步骤,就算出错了,改起来也容易多了。
2024/10/14 9:05:06 1.22MB 计算机实验
1
源于《电子报》2005年28期,实际制作之后有所改变
2024/10/14 1:44:36 43KB 心电信号
1
计算机图形学是一个成功的技术故事。
它的基本理念,表达方式,算法和硬件实现诞生于20世纪60-70年代,并在随后的20年间发展。
在20世纪90年代中期,计算机图形技术已经相当成熟,但是其影响仍旧只是局限于某些"高端"程序,例如超级计算机上的科学可视化以及昂贵的飞行模拟器。
现在的我们很难相信,但是在那个年代,很多计算机科学专业的学生对3D计算机图形一无所知!近几十年来,计算机图形的商业性有了巨大发展。
每一个现代PC都能够产生高质量的计算机生成图像,大部分是以视频游戏以及虚拟现实环境的形式。
整个动画工业已经从其高端(例如Pixar电影)转移到了孩子们的电视机前。
对于实拍电影,视觉特效领域也已经发生了翻天覆地的变化。
当今的观众们也不会在看到不可思议的计算机特效时感到畏惧——这已经在预期当中了。
在本书中,我们将会介绍计算机图形技术中基础的数学与算法。
我们使用编程API(applicationsprogramminginterface)OpenGL来完成其中的内容。
OpenGL是一个跨平台的图形编程环境,可以用于创建实时图形程序,例如视频游戏。
2024/10/13 8:43:47 68B 图形学 OpenGL
1
发生死锁时,可下载sqlite3.exe,并将其放入与.svn同级目录下。
1.启动cmd,并cd至svn目录下2.输入命令sqlite3.svn/wc.db"select*fromwork_queue"可以看见卡壳命令3.输入命令sqlite3.svn/wc.db"deletefromwork_queue"4.重新使用cleanup即可
2024/10/13 7:57:48 972KB tortoisesvn
1
提出了一种可以实现同种或异种金属材料固态冶金结合的新型激光冲击点焊工艺。
实验中,采用Nd∶YAG激光器发出的脉冲激光驱动厚度为30μm的钛箔产生局部塑性变形,并以超高速撞击厚度为100μm的铝板以实现点焊连接。
当钛箔的飞行距离分别为0.3、0.6、0.9mm时,焊点中心的回弹区域面积依次减小,而结合区域面积依次增大。
采用冷镶嵌技术制样用来观察焊点的截面特征,发现了沿焊点直径方向振幅和周期变化的波形界面和平直型界面。
为研究激光冲击点焊对材料力学性能的影响,应用纳米压痕测试技术测量了垂直于焊接界面方向材料的显微硬度,结果表明焊接界面附近材料的硬度值明显提高。
此外,焊接试样的拉伸剪切测试结果表明,当复板和基板发生有效固态冶金结合时其连接强度较高,失效形式通常是焊点边缘破裂。
激光冲击点焊为厚度在微米级的异种金属箔板的点焊连结开辟了新途径。
2024/10/12 17:05:55 5.77MB 激光技术 激光冲击 飞行距离 焊接界面
1
这家公司当时有200位研发人员和200多台服务器,我刚进这家公司时,系统已经玩不下去了,总是出现各种问题,例如日常发布系统时或访问量稍微过大时,系统就会出现很多故障,而且找不到故障发生的根本原因。
我进公司后主要的任务就是对这个系统进行升级改造,花了一个半月的时间写了份企业总体架构文档,文档共有124页,直接指导了之后的技术改造,下图是那份文档的目录,文末有相关资料下载地址。
企业商务模型的内容主要包括主营业务、商务模式、商务主体、竞品分析、组织架构、商务运作模型和业务流程等。
主营业务即公司做什么业务。
商业模式即公司怎么赚钱。
商务主体即哪几个人在一起做这门生意。
竞品分析即了解竞争对手的情况。
组织架
1
CHI700E系列是通用双恒电位仪,可同时控制同一电解池中的两个工作电极的电位,其典型应用是旋转环盘电极,也能被用于其它需要双工作电极的情况下。
双恒电位仪只能用于同一溶液中的两个工作电极的电位控制以及电流测量,而不是两个独立的恒电位仪。
仪器内含快速数字信号发生器,用于高频交流阻抗测量的直接数字信号合成器,双通道高速数据采集系统,电位电流信号滤波器,多级信号增益,iR降补偿电路,双恒电位仪,以及恒电流仪(CHI760E)。
两个通道的电位范围均为+/-10V。
电流范围(两通道电流之和)为±250mA。
CHI700E系列是在CHI600E的基础上增加了一块电路板,内含第二通道电位控制电路,电流-电压转换器,灵敏度选择,三个增益级,一个具有八个数量级可变频率范围的二阶低通滤波器。
CHI700E能够控制两个工作电极的电位,允许循环伏安法,线性扫描伏安法,阶梯波伏安法,计时安培法,差分脉冲伏安法,常规脉冲伏安法,方波伏安法,时间-电流曲线等实验技术进行双工作电极的测量。
当用作双恒电位仪测量时,第二工作电极电位可以保持在独立的恒定值,也可与第一工作电极同步扫描或阶跃等。
在循环伏安法中,还可与第一工作电极保持一恒定的电位差而扫描。
两个工作电极的电流测量下限均低于50pA,可直接用于超微电极上的稳态电流测量。
CHI700E系列也是十分快速的仪器。
信号发生器的更新速率为10MHz,数据采集采用两个同步16位高分辨低噪声的模数转换器,双通道同时采样的最高速率为1MHz。
循环伏安法的扫描速度为1000V/s时,电位增量仅0.1mV,当扫描速度为5000V/s时,电位增量为1mV。
又如交流阻抗的测量频率可达1MHz,交流伏安法的频率可达10KHz。
仪器还有外部信号输入通道,可在记录电化学信号的同时记录外部输入的电压信号,例如光谱信号等。
这对光谱电化学等实验极为方便。
2024/10/6 4:51:17 13.37MB 辰华
1
信号发生器,包括方波产生电路,三角波产生电路,正弦波产生电路,仿真图,仿真数据均包含其中。
2024/10/4 22:31:19 554KB 方波 三角波 正弦波 信号
1
ofdm的matlab仿真程序,从信号发生到调制解调,误码率计算,也包括信道估计,插值,信道编码~对于学习通信理解OFDM原理有很强的指导意义,同时也是能完成仿真试验的任务。
2024/10/3 8:15:08 3.11MB OFDM QDPSK MATLAB
1
共 952 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡