(含源码及报告)本程序分析了自2016年到2021年(外加)每年我国原油加工的产量,并且分析了2020年全国各地区原油加工量等,含饼状图,柱状图,折线图,数据在地图上显示。
运转本程序需要requests、bs4、csv、pandas、matplotlib、pyecharts库的支持,如果缺少某库请自行安装后再运转。
文件含6个excel表,若干个csv文件以及一个名字为render的html文件(需要用浏览器打开),直观的数据处理部分是图片以及html文件,可在地图中显示,数据处理的是excel文件。
不懂可以扫文件中二维码在QQ里面问。
2022/9/30 16:31:44 29.75MB 爬虫 python 源码软件 开发语言
1
高斯牛顿.datasets.py-非线性回归问题。
gaussnewton.py简单的非线性最小二乘问题求解器。
graph.py图形生成脚本。
img/-由graph.py生成的graph.py。
要求Python2.7NumPy意味Matplotlib
2020/9/18 3:40:16 46KB Python
1
注:数据集太大,可在压缩包中的数据集html页面中点击链接下载完整数据集。
本项目采用ASSISTments2012数据集,在所有数据集中,问题通常只有一种技能,但极少数可能与两种或三种技能相关联。
它通常取决于内容创建者给出的结构。
一些研究人员通过复制将具有多种技能的记录分成多个单一技能记录。
Wilson[6]声称这种类型的数据处理可以人为地显著提高预测结果,因为这些重复行可以占到DKT模型的Assistment09数据集中大约25%的记录。
因此,为了比较的公正性,我们在所有数据集中去掉了重复和多技能重复记录。
本项目基于pandas+Matplotlib+seaborn等工具包对学生的测试数据进行可视化统计分析,并利用学生2012年和2013年上半年不同类型题目的测试结果数据,构建机器学习面向,实现对学生的画像建模,以此预测2013年下半年测试对不同类型问题的表现。
可以看出,该决策树模型的预测结果如下,可以较好的依据用户测试的行为数据(测试过的试题种类、测试时间、犹豫情况、提示次数等等),预测该学生能否能考试达标(测试准确率>60%)
1
数据融合matlab代码自适应加权学习网络的轻量图像超分辨率王朝峰,李振和石军,“具有自适应加权学习网络的轻量图像超分辨率”,该代码基于依存关系的Python3.5PyTorch>=0.4.0麻木skimage意象matplotlibtqdm代码 gitclonegit@github.com:ChaofWang/AWSRN.git cdAWSRN抽象的近年来,深度学习已以出色的功能成功地应用于单图像超分辨率(SISR)任务。
但是,大多数基于卷积神经网络的SR模型都需要大量计算,这限制了它们在现实世界中的应用。
在这项工作中,为SISR提出了一种轻量级SR网络,称为自适应加权超分辨率网络(AWSRN),以解决此问题。
在AWSRN中设计了一种新颖的局部融合块(LFB),用于有效的残差学习,它由堆叠的自适应加权残差单元(AWRU)和局部残差融合单元(LRFU)组成。
此外,提出了一种自适应加权多尺度(AWMS)模块,以充分利用重建层中的特征。
AWMS由几个不同的尺度卷积组成,并且可以根据AWMS中针对轻量级网络的自适应权重的贡献来删除冗余尺度分
2018/6/1 12:43:36 3.95MB 系统开源
1
RGraphicsEssentialsforGreatDataVisualization:+200PracticalExamplesYouWanttoKnowforDataScienceBy作者:MrAlboukadelKassambaraISBN-10书号:1979748101ISBN-13书号:9781979748100Edition版本:1出书日期:2017-11-14pages页数:2571Abouttheauthor2RBasicsforDataVisualization3PlotOneVariable4PlotGroupedData5PlotTwoContinuousVariables6PlotMultivariateContinuousData7VisualizingMultivariateCategoricalData8PlotTimeSeriesData9Facets:Multi-PanelsGGPlot10ArrangeMultipleGGPlotonOnePage11CustomizeGGPlotReferences
2020/6/25 7:29:16 8.45MB Graphics
1
上次说到的,使用如下代码保存矢量图时,放在外侧的图例往往显示不完整:importnumpyasnpimportmatplotlib.pyplotaspltfig,ax=plt.subplots()x1=np.random.uniform(-10,10,size=20)x2=np.random.uniform(-10,10,size=20)#print(x1)#print(x2)number=[]x11=[]x12=[]foriinrange(20):number.append(i+1)x11.append(
2015/1/7 17:36:11 485KB li lib mat
1
看论文时,我们经常看到的散点图,既表达了数据的走势,也显示出了具体的数据点,是一种很好的数据处理方法。
Matlab用plot可以画图,但是想本人DIY设置散点图的参数,使用matlabR2017b自带的强大的工具箱(cftool)就方便多了。
这里面是博客中,散点图的试验数据。
2020/10/4 8:44:01 2KB 散点图
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡